Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam...Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits.展开更多
Cemented paste backfill (CPB) is gaining popularity in many underground mines worldwide. Sufficient water is added into CPB to make a flowable material for pipe transportation. Barricades are built near the drawpoin...Cemented paste backfill (CPB) is gaining popularity in many underground mines worldwide. Sufficient water is added into CPB to make a flowable material for pipe transportation. Barricades are built near the drawpoints to prevent in-rush of the fill slurry. To avoid barricade failures resulting from excessive backfill pressures, backfilling is typically performed with a plug pour followed by a final pour. The interval between the two pours should be shortened or removed to increase mining productivity and avoid pipe clogging. Recently, Li proposed to apply wick drains in backfilled stopes to promote drainage and consolidation. The preliminary simulations by considering an instantaneous filling indicated that the drainage of CPB can be significantly accelerated by using wick drains. Barricade was not considered. Here, some new numerical modeUings are presented with more representative filling sequences, stope geometry, and different draining configurations. The results illustrate that the stope can be backfilled continuously by using wick drains.展开更多
基金supported by the Qing Lan Project Foundation of Jiangsu Province in 2014,Foundation for Distinguished professor of Jiangsu Province in 2015,Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51421003)Project funded by China Postdoctoral Science Foundation(2016M601915)National Key Basic Research Program of China(No.2013CB227905)
文摘Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits.
基金the Natural Sciences and Engineering Research Council of Canada (RGPIN)the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST)the industrial partners of the Research Institute on Mines and the Environment (RIME UQAT-Polytechnique)
文摘Cemented paste backfill (CPB) is gaining popularity in many underground mines worldwide. Sufficient water is added into CPB to make a flowable material for pipe transportation. Barricades are built near the drawpoints to prevent in-rush of the fill slurry. To avoid barricade failures resulting from excessive backfill pressures, backfilling is typically performed with a plug pour followed by a final pour. The interval between the two pours should be shortened or removed to increase mining productivity and avoid pipe clogging. Recently, Li proposed to apply wick drains in backfilled stopes to promote drainage and consolidation. The preliminary simulations by considering an instantaneous filling indicated that the drainage of CPB can be significantly accelerated by using wick drains. Barricade was not considered. Here, some new numerical modeUings are presented with more representative filling sequences, stope geometry, and different draining configurations. The results illustrate that the stope can be backfilled continuously by using wick drains.