The study analysed the spatial and temporal contamination levels of fresh water resources by saline intrusion in the Douala coastal area. Water samples were collected from 19 stations. 3 stations were selected from th...The study analysed the spatial and temporal contamination levels of fresh water resources by saline intrusion in the Douala coastal area. Water samples were collected from 19 stations. 3 stations were selected from the mangrove area and 16 stations were selected from the rest of the area partitioned into four transects (coastal transect, inner transect 1, inner transect 2 and inner transect 3). Sampling was done repeatedly during the wet and dry seasons. They were analyzed for physico-chemical parameters according to the American Public Health Association methods. Geostatistical analysis was used in mapping the water properties. Considerable levels of actual electrical conductivity values (208.91 to 660.63 and 45 to 7540 μS/cm for the wet and dry seasons, respectively);calcium (0.06 to 85 and 4 to 256 mg/L for the wet and dry seasons, respectively);sulphate (0 to 103 and 0 to 99 mg/L for the wet and dry seasons) and total dissolved solids (15.79 to 1467 and 20 to 3750 mg/L for the wet and dry seasons, respectively) were observed for ground water in the study area based on spatio-temporal assessment. From the output grid, it could be deduced that the south eastern region had a hint of salt water intrusion (SWI) contamination of fresh water resources with actual value highs of electrical conductivity (1790 and 820 μS/cm) for the dry and wet seasons, respectively. Calcium highs (140 and 16 mg/L) for the dry and wet seasons were obtained at the central part of the study area. The spatial distribution of calcium highs extends from the central zone of the study area in the dry season and the south eastern zone in the wet season. The southern region is more vulnerable to contamination by calcium ions during this season. An up to date scope for surveillance monitoring and forecasting regarding the deterioration of coastal aquifers is recommended. Modelling of aquifers shifts for the coastal zone should be instituted as a means of ensuring efficient fresh water resources evaluation and utilization. An indepth study of the geochemical characteristics of ground water of the coastal zone could determine factors that most significantly impact on fresh water resource quality.展开更多
The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities an...The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities and other factors. The Yangshan Deepwater Port is the new deep water harbor, which is an important part of the Shanghai International Shipping Service Center. Its construction has received much attention. At present, the water depth from the 1 st to the 3 rd harbor district is currently suitable under regular dredging and tidal current action. The fourth harbor district will be built in the world’s largest fully-automated deep water wharf. In the study, bathymetry change of the entire sea area of the Yangshan Deepwater Port and the 4 th harbor district(i.e.,Phase IV project) waters were analyzed quantitatively using multiyear bathymetric, hydrological and sediment data. The results show that from 1998 to 2010, seabed changes are characterized by large volumes of erosion and sedimentation, which the southern part was deposited and the northern part was eroded in the inner harbor waters, but the seabed of the Kezhushan inlet was eroded. Seabed changes of Phase IV project waters generally show a scour tendency in recent few years with the annual scour rate about 0.7 m. Among the many factors, the existence of Kezhushan inlet and its influence of the western water flow play an important positive role in water depth changes under the ebb tide action.展开更多
The surface water quality of some stagnant water bodies (ponds and lakes—Obi Lake, Usede pond, Oguta lake, Omuku pond, Ugheghe pond, Karabodone lake, Abua lake, Ikarama lake, Tenmako lake, and Adiegbe lake) in the Ni...The surface water quality of some stagnant water bodies (ponds and lakes—Obi Lake, Usede pond, Oguta lake, Omuku pond, Ugheghe pond, Karabodone lake, Abua lake, Ikarama lake, Tenmako lake, and Adiegbe lake) in the Niger Delta area of Nigeria have been investigated experimentally by analysing the physico-chemical and biological characteristics of the surface water samples. Results show: pH (5.10 - 7.40), temperature (26.4°C - 31.0°C), turbidity (7.83 - 27.7NTU), electrical conductivity (13.5 - 34.8 μS/cm), biochemical oxygen demand (BOD) (1.07 - 19.5 mg/l), chemical oxygen demand (COD) (1.90 - 21.5 mg/l), suspended solids (SS) (9.70 - 37.3 mg/l), dissolved oxygen (DO) (2.7 - 8.7 mg/l), total dissolved solids (TDS) (33.8 - 187.0 mg/l), total phosphorus (0.73 - 2.47 mg/l), ammoniacal nitrogen (AN) (0.018 - 4.70 mg/l) and total fecal coliform count (TFCC) (nil - 2175 cfu/ml). Results on the water quality using Malaysian Water Quality Index (WQI) show that Usede pond and Obi Lake belong to Class II with values that are 75.24 and 76.73 respectively. The WQI of Oguta lake, Omuku pond, Ugheghe pond, Karabodone lake and Abua lake are 67.46, 65.64, 65.87, 50.77, and 67.01 respectively and belongs to class III. The WQI of Ikarama lake, Tenmako lake, and Adiegbe lake are 43.38, 37.60, and 41.40, respectively and belongs to class IV and is described as fair.展开更多
A study based on the spatial variability and contamination levels of fresh water resources by saline intrusion was conducted in the Douala coastal area. The study was aimed at highlighting the associations between maj...A study based on the spatial variability and contamination levels of fresh water resources by saline intrusion was conducted in the Douala coastal area. The study was aimed at highlighting the associations between major ions in ground water from which cause-effect relationships could be inferred. Water samples were collected from 19 stations. 3 stations were selected from the mangrove area and 16 stations were selected from the rest of the area partitioned into four transects (coastal transect, inner transect 1, inner transect 2 and inner transect 3). Sampling was done repeatedly during the dry season and these samples were analysed for physico-chemical parameters. Results show that the samples were acidic (pH: 4.7 - 6.7). Total dissolved solids (TDS) and electrical conductivity (EC) values ranged between 70.3 - 3703 mg/L and 136.4 - 7333 μS/cm respectively indicating medium salt enrichment and brackish waters. High temperatures (T°C) and low dissolved oxygen (DO) values of 26°C - 30.3°C and 0.96 - 3.9 mg/L respectively were observed and this could be interpreted as the acceleration of biological and chemical processes of ground water resources. Major ions were within the WHO limits except for Ca2+ (20.3 - 85 mg/L) and Mg2+ (6.6 - 49.6 mg/L) respectively whose concentrations were slightly higher. The leading cations were Ca2+ > Na+ > Mg2+ > K+ while were the leading anions. The multivariate analysis approach (MAA) values obtained for water variables showed that F1, F2 and F3 accounted for 61.6%, 21.5% and 9.9% respectively of total variance with strong loadings and these were considered to account for the ground and surface water quality of the area. The main water types were 63.2% , 26.3% Ca2+-Cl- and 10.5% Na+-Cl-. 89.5% of the water types had secondary salinity implying that anthropogenic sources were the source of salinity. The water was not fit for drinking. The values calculated for percentage sodium and sodium absorption ratio to determine its suitability for agricultural purposes revealed that 63.15%, 15.5%, 5.3% and 15.8% of sampled water were excellent, good, doubtful and unsuitable respectively for irrigation purposes. The need for water resource monitoring and forecasting regarding deterioration in quality is imperative before hazards of the rise in sea level arise.展开更多
The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope...The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope was expanded to include the startup monitoring function with the aim of replacing both the source and IRMs(intermediate range monitors)in BWRs(boiling water reactors).The WRNMs,consisting of a newly designed fixed incore regenerative sensor and new electronics,which include both counting and MSV(mean square voltage)channels,have been tested in several reactors and its capabilities have been confirmed.The channel will cover the neutron flux range from 103 nv to 1.5×103 nv;it has greater than 1 decade overlap between the counting and MSV channels.Because of the regenerative fissile coating the sensor,even though fixed incore,has a life of approximately 6.0 full power years in a 51 kW/L BWR and similar situation has been proposed for newly designed small modular reactor such as BWRX-300 of General Electric Hitachi reactor.展开更多
An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-s...An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-step hydrothermal approach,and various techniques were applied to investigate the morphology,structure,and optical properties of the carbon dots.Under the optimal experimental conditions,4-nitrophenol rapidly quenched the fluorescence of carbon dots as a result of the inner filter eff ect(IFE).The fluorescence intensity of carbon dots was linear with the concentration of 4-nitrophenol(1–150μmol/L)and the limit of detection was 0.32μmol/L.The fluorescence was gradually recovered as the cerium(IV)concentration(0.5–100μmol/L)increased in CDs/4-NP,and the limit of detection was 0.16μmol/L.The sensor showed good selectivity and demonstrated high accuracy for the analysis of 4-nitrophenol and cerium(IV)in actual water samples.展开更多
文摘The study analysed the spatial and temporal contamination levels of fresh water resources by saline intrusion in the Douala coastal area. Water samples were collected from 19 stations. 3 stations were selected from the mangrove area and 16 stations were selected from the rest of the area partitioned into four transects (coastal transect, inner transect 1, inner transect 2 and inner transect 3). Sampling was done repeatedly during the wet and dry seasons. They were analyzed for physico-chemical parameters according to the American Public Health Association methods. Geostatistical analysis was used in mapping the water properties. Considerable levels of actual electrical conductivity values (208.91 to 660.63 and 45 to 7540 μS/cm for the wet and dry seasons, respectively);calcium (0.06 to 85 and 4 to 256 mg/L for the wet and dry seasons, respectively);sulphate (0 to 103 and 0 to 99 mg/L for the wet and dry seasons) and total dissolved solids (15.79 to 1467 and 20 to 3750 mg/L for the wet and dry seasons, respectively) were observed for ground water in the study area based on spatio-temporal assessment. From the output grid, it could be deduced that the south eastern region had a hint of salt water intrusion (SWI) contamination of fresh water resources with actual value highs of electrical conductivity (1790 and 820 μS/cm) for the dry and wet seasons, respectively. Calcium highs (140 and 16 mg/L) for the dry and wet seasons were obtained at the central part of the study area. The spatial distribution of calcium highs extends from the central zone of the study area in the dry season and the south eastern zone in the wet season. The southern region is more vulnerable to contamination by calcium ions during this season. An up to date scope for surveillance monitoring and forecasting regarding the deterioration of coastal aquifers is recommended. Modelling of aquifers shifts for the coastal zone should be instituted as a means of ensuring efficient fresh water resources evaluation and utilization. An indepth study of the geochemical characteristics of ground water of the coastal zone could determine factors that most significantly impact on fresh water resource quality.
基金The Fund of Tianjin Research Institute of Water Transport Engineering of China under contract Nos TKS180101,TKS170202 and TKS150207the National Natural Science Foundation of China under contract Nos 51509120 and 51779112+1 种基金the Shanghai Science and Technology Committee under contract No.15DZ1202300the Tianjin Science and Technology Plan Innovation Platform and Talent Special Fund Project under contract No.16PTSYJC00190
文摘The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities and other factors. The Yangshan Deepwater Port is the new deep water harbor, which is an important part of the Shanghai International Shipping Service Center. Its construction has received much attention. At present, the water depth from the 1 st to the 3 rd harbor district is currently suitable under regular dredging and tidal current action. The fourth harbor district will be built in the world’s largest fully-automated deep water wharf. In the study, bathymetry change of the entire sea area of the Yangshan Deepwater Port and the 4 th harbor district(i.e.,Phase IV project) waters were analyzed quantitatively using multiyear bathymetric, hydrological and sediment data. The results show that from 1998 to 2010, seabed changes are characterized by large volumes of erosion and sedimentation, which the southern part was deposited and the northern part was eroded in the inner harbor waters, but the seabed of the Kezhushan inlet was eroded. Seabed changes of Phase IV project waters generally show a scour tendency in recent few years with the annual scour rate about 0.7 m. Among the many factors, the existence of Kezhushan inlet and its influence of the western water flow play an important positive role in water depth changes under the ebb tide action.
文摘The surface water quality of some stagnant water bodies (ponds and lakes—Obi Lake, Usede pond, Oguta lake, Omuku pond, Ugheghe pond, Karabodone lake, Abua lake, Ikarama lake, Tenmako lake, and Adiegbe lake) in the Niger Delta area of Nigeria have been investigated experimentally by analysing the physico-chemical and biological characteristics of the surface water samples. Results show: pH (5.10 - 7.40), temperature (26.4°C - 31.0°C), turbidity (7.83 - 27.7NTU), electrical conductivity (13.5 - 34.8 μS/cm), biochemical oxygen demand (BOD) (1.07 - 19.5 mg/l), chemical oxygen demand (COD) (1.90 - 21.5 mg/l), suspended solids (SS) (9.70 - 37.3 mg/l), dissolved oxygen (DO) (2.7 - 8.7 mg/l), total dissolved solids (TDS) (33.8 - 187.0 mg/l), total phosphorus (0.73 - 2.47 mg/l), ammoniacal nitrogen (AN) (0.018 - 4.70 mg/l) and total fecal coliform count (TFCC) (nil - 2175 cfu/ml). Results on the water quality using Malaysian Water Quality Index (WQI) show that Usede pond and Obi Lake belong to Class II with values that are 75.24 and 76.73 respectively. The WQI of Oguta lake, Omuku pond, Ugheghe pond, Karabodone lake and Abua lake are 67.46, 65.64, 65.87, 50.77, and 67.01 respectively and belongs to class III. The WQI of Ikarama lake, Tenmako lake, and Adiegbe lake are 43.38, 37.60, and 41.40, respectively and belongs to class IV and is described as fair.
文摘A study based on the spatial variability and contamination levels of fresh water resources by saline intrusion was conducted in the Douala coastal area. The study was aimed at highlighting the associations between major ions in ground water from which cause-effect relationships could be inferred. Water samples were collected from 19 stations. 3 stations were selected from the mangrove area and 16 stations were selected from the rest of the area partitioned into four transects (coastal transect, inner transect 1, inner transect 2 and inner transect 3). Sampling was done repeatedly during the dry season and these samples were analysed for physico-chemical parameters. Results show that the samples were acidic (pH: 4.7 - 6.7). Total dissolved solids (TDS) and electrical conductivity (EC) values ranged between 70.3 - 3703 mg/L and 136.4 - 7333 μS/cm respectively indicating medium salt enrichment and brackish waters. High temperatures (T°C) and low dissolved oxygen (DO) values of 26°C - 30.3°C and 0.96 - 3.9 mg/L respectively were observed and this could be interpreted as the acceleration of biological and chemical processes of ground water resources. Major ions were within the WHO limits except for Ca2+ (20.3 - 85 mg/L) and Mg2+ (6.6 - 49.6 mg/L) respectively whose concentrations were slightly higher. The leading cations were Ca2+ > Na+ > Mg2+ > K+ while were the leading anions. The multivariate analysis approach (MAA) values obtained for water variables showed that F1, F2 and F3 accounted for 61.6%, 21.5% and 9.9% respectively of total variance with strong loadings and these were considered to account for the ground and surface water quality of the area. The main water types were 63.2% , 26.3% Ca2+-Cl- and 10.5% Na+-Cl-. 89.5% of the water types had secondary salinity implying that anthropogenic sources were the source of salinity. The water was not fit for drinking. The values calculated for percentage sodium and sodium absorption ratio to determine its suitability for agricultural purposes revealed that 63.15%, 15.5%, 5.3% and 15.8% of sampled water were excellent, good, doubtful and unsuitable respectively for irrigation purposes. The need for water resource monitoring and forecasting regarding deterioration in quality is imperative before hazards of the rise in sea level arise.
文摘The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope was expanded to include the startup monitoring function with the aim of replacing both the source and IRMs(intermediate range monitors)in BWRs(boiling water reactors).The WRNMs,consisting of a newly designed fixed incore regenerative sensor and new electronics,which include both counting and MSV(mean square voltage)channels,have been tested in several reactors and its capabilities have been confirmed.The channel will cover the neutron flux range from 103 nv to 1.5×103 nv;it has greater than 1 decade overlap between the counting and MSV channels.Because of the regenerative fissile coating the sensor,even though fixed incore,has a life of approximately 6.0 full power years in a 51 kW/L BWR and similar situation has been proposed for newly designed small modular reactor such as BWRX-300 of General Electric Hitachi reactor.
基金National Natural Science Foundation of China(22274096 and 22272119)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)+2 种基金the Science and Technology Committee of Shanghai Municipality(2022-4-ZD-03)the Shanghai Pilot Program for Basic Researchthe Fundamental Research Funds for the Central Universities。
文摘An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-step hydrothermal approach,and various techniques were applied to investigate the morphology,structure,and optical properties of the carbon dots.Under the optimal experimental conditions,4-nitrophenol rapidly quenched the fluorescence of carbon dots as a result of the inner filter eff ect(IFE).The fluorescence intensity of carbon dots was linear with the concentration of 4-nitrophenol(1–150μmol/L)and the limit of detection was 0.32μmol/L.The fluorescence was gradually recovered as the cerium(IV)concentration(0.5–100μmol/L)increased in CDs/4-NP,and the limit of detection was 0.16μmol/L.The sensor showed good selectivity and demonstrated high accuracy for the analysis of 4-nitrophenol and cerium(IV)in actual water samples.