Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an...Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients.展开更多
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ...Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.展开更多
This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,wher...This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.展开更多
With the advantages of lightweight and high resource utilization,cloud-native technology with containers as the core is gradually becoming themainstreamtechnical architecture for information infrastructure.However,mal...With the advantages of lightweight and high resource utilization,cloud-native technology with containers as the core is gradually becoming themainstreamtechnical architecture for information infrastructure.However,malware attacks such as Doki and Symbiote threaten the container runtime’s security.Malware initiates various types of runtime anomalies based on process form(e.g.,modifying the process of a container,and opening the external ports).Fortunately,dynamic monitoring mechanisms have proven to be a feasible solution for verifying the trusted state of containers at runtime.Nevertheless,the current routine dynamic monitoring mechanisms for baseline data protection are still based on strong security assumptions.As a result,the existing dynamicmonitoringmechanismis still not practical enough.To ensure the trustworthiness of the baseline value data and,simultaneously,to achieve the integrity verification of the monitored process,we combine blockchain and trusted computing to propose a process integrity monitoring system named IPMS.Firstly,the hardware TPM 2.0 module is applied to construct a trusted security foundation for the integrity of the process code segment due to its tamper-proof feature.Then,design a new format for storing measurement logs,easily distinguishing files with the same name in different containers from log information.Meanwhile,the baseline value data is stored on the blockchain to avoidmalicious damage.Finally,trusted computing technology is used to perform fine-grained integrity measurement and remote attestation of processes in a container,detect abnormal containers in time and control them.We have implemented a prototype system and performed extensive simulation experiments to test and analyze the functionality and performance of the PIMS.Experimental results show that PIMS can accurately and efficiently detect tampered processes with only 3.57% performance loss to the container.展开更多
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple...Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.展开更多
A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation informat...A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation information. The short-term warning model was built by using the two-side cumulative sum (CUSUM) test, which further improves the warning system reliability. Availability (the minimum warning deformation, MWD), false alarm rate (the average run length, ARL), missed rate (the warning delay, WD) and the relationships among them were analyzed and the method choosing warning parameters is given. A test of a deformation simulation platform shows that the warning algorithm can be effectively used for steep deformation warning. A field experiment of the Malan mine shaft in Shanxi coal area illustrates that the proposed algorithm can detect small dynamic changes and the corresponding occurring time. At given warning thresholds (MWD is 15 mm and ARL is 1000),the detected deformations of two consecutive days’ deformation sequences with the algorithm occur at the 705th epoch (705 s) and the 517th epoch (517 s), respectively.展开更多
A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP)...A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP) parameter and the uncertainty noise. The choice of the proper performance parameter provided the single-valued mapping with the missed detection probability estimates the probability of failure. The desirable characteristics of the residual sensitivity matrix are exploited to increase the efficiency for identifying erroneous observations. The algorithm can be used to support the performance specification and the efficient calculation of the integrity monitoring process. The simulation for non-precision approach (NPA) validates both the viability and the effectiveness of the proposed algorithm.展开更多
Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic s...Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic stress,irregular shape and existence of ore body,and complex mining methods,the application of microseismic technology is more diverse in China compared to other countries,and is more challenging than in other underground structures such as tunnels,hydropower stations and coal mines.Apart from assessing rock mass stability and ground pressure hazards induced by mining process,blasting,water inrush and large scale goaf,microseismic technology is also used to monitor illegal mining,and track personnel location during rescue work.Moreover,microseismic data have been used to optimize mining parameters in some metal mines.The technology is increasingly used to investigate cracking mechanism in the design of rock mass supports.In this paper,the application,research development and related achievements of microseismic technology in underground metal mines in China are summarized.By considering underground mines from the perspective of informatization,automation and intelligentization,future studies should focus on intelligent microseismic data processing method,e.g.,signal identification of microseismic and precise location algorithm,and on the research and development of microseismic equipment.In addition,integrated monitoring and collaborative analysis for rock mass response caused by mining disturbance will have good prospects for future development.展开更多
Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national e...Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.展开更多
Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of mo...Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.展开更多
A joint effort between the Connecticut Department of Transportation and the University of Connecticut has been underway for more than 20 years to utilize various structural monitoring approaches to assess different br...A joint effort between the Connecticut Department of Transportation and the University of Connecticut has been underway for more than 20 years to utilize various structural monitoring approaches to assess different bridges in Connecticut. This has been done to determine the performance of existing bridges, refine techniques needed to evaluate different bridge components, and develop approaches that can be used to provide a continuous status of a bridge's structural integrity. This paper briefly introduces the background of these studies, with emphasis on recent research and the development of structural health monitoring concepts. This paper presents the results from three different bridge types: a post-tensioned curved concrete box girder bridge, a curved steel box-girder bridge, and a steel multi-girder bridge. The structural health monitoring approaches to be discussed have been successfully tested using field data collected during multi-year monitoring periods, and are based on vibrations, rotations and strains. The goal has been to develop cost-effective strategies to provide critical information needed to manage the State of Connecticut's bridge infrastructure.展开更多
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st...For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.展开更多
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, mo...The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.展开更多
Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm i...Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm is only suitable for single fault detection, single GNSS constellation. However, multiple satellite failure should be considered when more than one satellite navigation system are adopted. To detect and exclude multi-fault, most current algorithms perform an iteration procedure considering all possible fault model which lead to heavy computation burden. An alternative RAIM is presented in this paper based on multiple satellite constellations(for example, GPS and Bei Dou(BDS) etc.) and robust estimation for multi-fault detection and exclusion, which can not only detect multi-failures,but also control the influences of near failure observation. Besides, the RAIM algorithm based on robust estimation is more efficient than the current RAIM algorithm for multiple constellation and multiple faults. Finally, the algorithm is tested by GPS/Bei Dou data.展开更多
Introduces a new monitoring method in FMS explicated in some detail by means of the MSF(Monitoring System of FMS)under development by the au- thors.In order to push FMS technology forword,enhance machining flexibility...Introduces a new monitoring method in FMS explicated in some detail by means of the MSF(Monitoring System of FMS)under development by the au- thors.In order to push FMS technology forword,enhance machining flexibility and the flexibility of human operaters and equipment in a FMS,the authors have made some breakthroughs in traditional ways of single item,unit monitoring and self-han- dling,and suggested the idea of integrated inspection and put the MSF into more practicability.The working status of FMS can be monitored on the CRT of a micro- computer of the MSF,system troubles will be shown with icons,by the flash of the system characteristic symbol or by alarming,and so on.This explores a new way for FMS inspection in a wholly integrated manner.展开更多
The use of GPS is becoming increasingly popular for real-time navigation systems. To ensure that satellite failures are detected and excluded at the receiver is of high importance for the integrity of the satellite na...The use of GPS is becoming increasingly popular for real-time navigation systems. To ensure that satellite failures are detected and excluded at the receiver is of high importance for the integrity of the satellite navigation system. The focus of this paper is to implement a fault detection and exclusion algorithm in a software GPS receiver in order to provide timely warnings to the user when it is not advisable to use the GPS system for navigation. The GPS system currently provides some basic integrity information to users via the navigation message, but it is not timely enough for safety-critical applications. RAIM is a means of providing integrity with the capability of detecting when a satellite failure or a measurement error has occurred. It is the simplest and most cost effective technique for integrity monitoring. After applying the iterative fault detection and the exclusion algorithm, a significant improvement in positioning accuracy is achieved.展开更多
The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is ...The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.展开更多
To improve the monitoring precision of lake chlorophyll a (Chl-a), this paper presents a fusion method based on Choquet Fuzzy Integral (CFI) to estimate the Chl-a concentration. A group of BPNN models are designed. Th...To improve the monitoring precision of lake chlorophyll a (Chl-a), this paper presents a fusion method based on Choquet Fuzzy Integral (CFI) to estimate the Chl-a concentration. A group of BPNN models are designed. The output of multiple BPNN model is fused by the CFI. Meanwhile, to resolve the over-fitting problem caused by a small number of training sets, we design an algorithm that fully considers neighbor sampling information. A classification experiment of the Chl-a concentration of the Taihu Lake is conducted. The result shows that, the proposed approach is superior to the classification using a single neural network classifier, and the CFI fusion method has higher identification accuracy.展开更多
An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client co...An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.展开更多
The relationships and the features of integration between Enterprise ProcessMonitoring and Controlling System (EPMCS) and Enterprise Process Related Applications (EPRA) wereanalyzed. An integration architecture center...The relationships and the features of integration between Enterprise ProcessMonitoring and Controlling System (EPMCS) and Enterprise Process Related Applications (EPRA) wereanalyzed. An integration architecture centered on EPMCS was presented, in which there were fourlayers to connect from EPMCS to EPRA: EPMCS, application integration layer, transport layer andEPRA, and there were four layers used to etstablish integration: presentation layer, function layer,data layer and system layer. The frameworks to connect EPMCS and EPRA were designed, thatEnterprise-Independent Model (EIM), Enterprise-Specific Model (ESM) and meta-model to describe thesetwo models were defined. The method to integrate data based on XML was designed to exchange datafrom EPMCS to EPRA according to the mapping between EIM and ESM. The approches are suitable forintegrating EPMCS and systems in Product Data Management (PDM), project management and enterprisebusiness management.展开更多
基金This work was financially supported by the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.32171399,32171456,and T2225010)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012261)the Science and Technology Program of Guangzhou,China(No.202103000076)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02),and Pazhou Lab,Guangzhou(No.PZL2021KF0003)FML would like to thank the National Natural Science Foundation of China(Nos.32171335 and 31900954)JL would like to thank the National Natural Science Foundation of China(No.62105380)the China Postdoctoral Science Foundation(No.2021M693686)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645).
文摘Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients.
文摘Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.
基金funded by the project of the China Geological Survey(DD20211364)the Science and Technology Talent Program of Ministry of Natural Resources of China(grant number 121106000000180039–2201)。
文摘This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.
基金supported by China’s National Natural Science Foundation (U19A2081,61802270,61802271)Ministry of Education and China Mobile Research Fund Project (MCM20200102,CM20200409)Sichuan University Engineering Characteristic Team Project 2020SCUNG129.
文摘With the advantages of lightweight and high resource utilization,cloud-native technology with containers as the core is gradually becoming themainstreamtechnical architecture for information infrastructure.However,malware attacks such as Doki and Symbiote threaten the container runtime’s security.Malware initiates various types of runtime anomalies based on process form(e.g.,modifying the process of a container,and opening the external ports).Fortunately,dynamic monitoring mechanisms have proven to be a feasible solution for verifying the trusted state of containers at runtime.Nevertheless,the current routine dynamic monitoring mechanisms for baseline data protection are still based on strong security assumptions.As a result,the existing dynamicmonitoringmechanismis still not practical enough.To ensure the trustworthiness of the baseline value data and,simultaneously,to achieve the integrity verification of the monitored process,we combine blockchain and trusted computing to propose a process integrity monitoring system named IPMS.Firstly,the hardware TPM 2.0 module is applied to construct a trusted security foundation for the integrity of the process code segment due to its tamper-proof feature.Then,design a new format for storing measurement logs,easily distinguishing files with the same name in different containers from log information.Meanwhile,the baseline value data is stored on the blockchain to avoidmalicious damage.Finally,trusted computing technology is used to perform fine-grained integrity measurement and remote attestation of processes in a container,detect abnormal containers in time and control them.We have implemented a prototype system and performed extensive simulation experiments to test and analyze the functionality and performance of the PIMS.Experimental results show that PIMS can accurately and efficiently detect tampered processes with only 3.57% performance loss to the container.
文摘Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.
基金Projects(2013RC16,2012LWB28)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(NCET-13-1019)supported by the Program for New Century Excellent Talents in University,China
文摘A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation information. The short-term warning model was built by using the two-side cumulative sum (CUSUM) test, which further improves the warning system reliability. Availability (the minimum warning deformation, MWD), false alarm rate (the average run length, ARL), missed rate (the warning delay, WD) and the relationships among them were analyzed and the method choosing warning parameters is given. A test of a deformation simulation platform shows that the warning algorithm can be effectively used for steep deformation warning. A field experiment of the Malan mine shaft in Shanxi coal area illustrates that the proposed algorithm can detect small dynamic changes and the corresponding occurring time. At given warning thresholds (MWD is 15 mm and ARL is 1000),the detected deformations of two consecutive days’ deformation sequences with the algorithm occur at the 705th epoch (705 s) and the 517th epoch (517 s), respectively.
基金Supported by the National High Technology Research and Development Program of China (‘863’Program) (2006AA12Z313)~~
文摘A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP) parameter and the uncertainty noise. The choice of the proper performance parameter provided the single-valued mapping with the missed detection probability estimates the probability of failure. The desirable characteristics of the residual sensitivity matrix are exploited to increase the efficiency for identifying erroneous observations. The algorithm can be used to support the performance specification and the efficient calculation of the integrity monitoring process. The simulation for non-precision approach (NPA) validates both the viability and the effectiveness of the proposed algorithm.
基金Projects(51974059,52174142)supported by the National Natural Science Foundation of ChinaProject(2017YFC0602904)supported by the National Key Research and Development Program of ChinaProject(N180115010)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic stress,irregular shape and existence of ore body,and complex mining methods,the application of microseismic technology is more diverse in China compared to other countries,and is more challenging than in other underground structures such as tunnels,hydropower stations and coal mines.Apart from assessing rock mass stability and ground pressure hazards induced by mining process,blasting,water inrush and large scale goaf,microseismic technology is also used to monitor illegal mining,and track personnel location during rescue work.Moreover,microseismic data have been used to optimize mining parameters in some metal mines.The technology is increasingly used to investigate cracking mechanism in the design of rock mass supports.In this paper,the application,research development and related achievements of microseismic technology in underground metal mines in China are summarized.By considering underground mines from the perspective of informatization,automation and intelligentization,future studies should focus on intelligent microseismic data processing method,e.g.,signal identification of microseismic and precise location algorithm,and on the research and development of microseismic equipment.In addition,integrated monitoring and collaborative analysis for rock mass response caused by mining disturbance will have good prospects for future development.
基金financially supported by National Key R&D Program of China (No. 2018YFC1505201)National Natural Science Foundation of China (No. 41901008)+2 种基金Open Fund Project of Key Laboratory of Mountain Hazards and Surface Processes of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities (Grant NO. 2682018CX05)financially supported by China Scholarship Council
文摘Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.
基金Supported by National Natural Science Fund Project(51275052)Key project supported by Beijing Municipal Natural Science Foundation(3131002)Open topic of Key Laboratory of Key Laboratory of Modern Measurement & Control Technology,Ministry of Education(KF20141123202,KF20111123201)
文摘Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.
基金Supported by:Federal Highway Administration,United States Department of Transportation
文摘A joint effort between the Connecticut Department of Transportation and the University of Connecticut has been underway for more than 20 years to utilize various structural monitoring approaches to assess different bridges in Connecticut. This has been done to determine the performance of existing bridges, refine techniques needed to evaluate different bridge components, and develop approaches that can be used to provide a continuous status of a bridge's structural integrity. This paper briefly introduces the background of these studies, with emphasis on recent research and the development of structural health monitoring concepts. This paper presents the results from three different bridge types: a post-tensioned curved concrete box girder bridge, a curved steel box-girder bridge, and a steel multi-girder bridge. The structural health monitoring approaches to be discussed have been successfully tested using field data collected during multi-year monitoring periods, and are based on vibrations, rotations and strains. The goal has been to develop cost-effective strategies to provide critical information needed to manage the State of Connecticut's bridge infrastructure.
基金Supported by the National Natural Science Foundation of China (61074079)Shanghai Leading Academic Discipline Project (B054)
文摘For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.
文摘The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
基金supported by the National 863 project(2013AA122501-1)the National Natural Science Foundation of China(41020144004,41474015,41374019,41374003,41274040)
文摘Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm is only suitable for single fault detection, single GNSS constellation. However, multiple satellite failure should be considered when more than one satellite navigation system are adopted. To detect and exclude multi-fault, most current algorithms perform an iteration procedure considering all possible fault model which lead to heavy computation burden. An alternative RAIM is presented in this paper based on multiple satellite constellations(for example, GPS and Bei Dou(BDS) etc.) and robust estimation for multi-fault detection and exclusion, which can not only detect multi-failures,but also control the influences of near failure observation. Besides, the RAIM algorithm based on robust estimation is more efficient than the current RAIM algorithm for multiple constellation and multiple faults. Finally, the algorithm is tested by GPS/Bei Dou data.
文摘Introduces a new monitoring method in FMS explicated in some detail by means of the MSF(Monitoring System of FMS)under development by the au- thors.In order to push FMS technology forword,enhance machining flexibility and the flexibility of human operaters and equipment in a FMS,the authors have made some breakthroughs in traditional ways of single item,unit monitoring and self-han- dling,and suggested the idea of integrated inspection and put the MSF into more practicability.The working status of FMS can be monitored on the CRT of a micro- computer of the MSF,system troubles will be shown with icons,by the flash of the system characteristic symbol or by alarming,and so on.This explores a new way for FMS inspection in a wholly integrated manner.
文摘The use of GPS is becoming increasingly popular for real-time navigation systems. To ensure that satellite failures are detected and excluded at the receiver is of high importance for the integrity of the satellite navigation system. The focus of this paper is to implement a fault detection and exclusion algorithm in a software GPS receiver in order to provide timely warnings to the user when it is not advisable to use the GPS system for navigation. The GPS system currently provides some basic integrity information to users via the navigation message, but it is not timely enough for safety-critical applications. RAIM is a means of providing integrity with the capability of detecting when a satellite failure or a measurement error has occurred. It is the simplest and most cost effective technique for integrity monitoring. After applying the iterative fault detection and the exclusion algorithm, a significant improvement in positioning accuracy is achieved.
基金National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAB10B06)Independent Innovation Foundation of Tianjin University (No. 1102119)
文摘The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.
文摘To improve the monitoring precision of lake chlorophyll a (Chl-a), this paper presents a fusion method based on Choquet Fuzzy Integral (CFI) to estimate the Chl-a concentration. A group of BPNN models are designed. The output of multiple BPNN model is fused by the CFI. Meanwhile, to resolve the over-fitting problem caused by a small number of training sets, we design an algorithm that fully considers neighbor sampling information. A classification experiment of the Chl-a concentration of the Taihu Lake is conducted. The result shows that, the proposed approach is superior to the classification using a single neural network classifier, and the CFI fusion method has higher identification accuracy.
基金Supported by the National Hi-tech Research and Development Program of China(2007AA04Z415)the Hunan Province and Xiangtan City Natural Science Joint Foundation(09JJ8005)the Torch Program Project of Hunan Province(2008SH044)
文摘An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.
文摘The relationships and the features of integration between Enterprise ProcessMonitoring and Controlling System (EPMCS) and Enterprise Process Related Applications (EPRA) wereanalyzed. An integration architecture centered on EPMCS was presented, in which there were fourlayers to connect from EPMCS to EPRA: EPMCS, application integration layer, transport layer andEPRA, and there were four layers used to etstablish integration: presentation layer, function layer,data layer and system layer. The frameworks to connect EPMCS and EPRA were designed, thatEnterprise-Independent Model (EIM), Enterprise-Specific Model (ESM) and meta-model to describe thesetwo models were defined. The method to integrate data based on XML was designed to exchange datafrom EPMCS to EPRA according to the mapping between EIM and ESM. The approches are suitable forintegrating EPMCS and systems in Product Data Management (PDM), project management and enterprisebusiness management.