The zero dissipation limit to the contact discontinuities for one-dimensional com- pressible Navier-Stokes equations was recently proved for ideal polytropic gas (see Huang et al. [15, 22] and Ma [31]), but there is...The zero dissipation limit to the contact discontinuities for one-dimensional com- pressible Navier-Stokes equations was recently proved for ideal polytropic gas (see Huang et al. [15, 22] and Ma [31]), but there is few result for general gases including ideal polytropic gas. We prove that if the solution to the corresponding Euler system of general gas satisfying (1.4) is piecewise constant with a contact discontinuity, then there exist smooth solutions to Navier-Stokes equations which converge to the inviscid solutions at a rate of k1/4 as the heat-conductivity coefficient k tends to zero. The key is to construct a viscous contact wave of general gas suitable to our proof (see Section 2). Notice that we have no need to restrict the strength of the contact discontinuity to be small.展开更多
The various factors influencing the settlement of composite foundation have been more completely studied through numerical simulation. The influence on the settlement of composite foundation of the geometry and mechan...The various factors influencing the settlement of composite foundation have been more completely studied through numerical simulation. The influence on the settlement of composite foundation of the geometry and mechanical properties of the pile, soil, cushion, and the interface between pile and soil have been investigated through computer simulation, in which the contact elements with zero thickness are used. Some valuable conclusions for the settlement of composite foundation have been obtained: (1) The method using the contact element of zero thickness is successful when used in the simulation of the settlement of composite foundation; (2) Among the factors influencing the settlement of composite foundation, the compression modulus of the soil is the largest, and the cohesion of the soil is the second largest; (3) The effects on settlement of the internal friction angle of the soil, the elastic modulus, the radius, and the length of the pile, and the elestic modulus of the cushion are also more obvious.展开更多
Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-dra...Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-drain contact CNTFETs outperform the Schottky contact devices with and without strain applied. The off-state current in both types of contact is similar with and without strain applied. This is because both types of contact offer very similar potential barrier in off-state. However, the on-state current in doped contact devices is much higher due to better modulation of on-state potential profile, and its variation with strain is sensitive to the device contact type. The on/off current ratio and the inverse subthreshold slope are better with doped source-drain contact, and their variations with strain are relatively less sensitive to the device contact type. The channel transconductance and device switching performance are much better with doped source-drain contact, and their variations with strain are sensitive to device contact type.展开更多
For the general gas including ideal polytropic gas, we study the zero dissipation limit problem of the full 1-D compressible Navier-Stokes equations toward the superposition of contact discontinuity and two rarefactio...For the general gas including ideal polytropic gas, we study the zero dissipation limit problem of the full 1-D compressible Navier-Stokes equations toward the superposition of contact discontinuity and two rarefaction waves. In the case of both smooth and Riemann initial data, we show that if the solutions to the corresponding Euler system consist of the composite wave of two rarefaction wave and contact discontinuity, then there exist solutions to Navier-Stokes equations which converge to the Riemman solutions away from the initial layer with a decay rate in any fixed time interval as the viscosity and the heat-conductivity coefficients tend to zero. The proof is based on scaling arguments, the construction of the approximate profiles and delicate energy estimates. Notice that we have no need to restrict the strengths of the contact discontinuity and rarefaction waves to be small.展开更多
文摘The zero dissipation limit to the contact discontinuities for one-dimensional com- pressible Navier-Stokes equations was recently proved for ideal polytropic gas (see Huang et al. [15, 22] and Ma [31]), but there is few result for general gases including ideal polytropic gas. We prove that if the solution to the corresponding Euler system of general gas satisfying (1.4) is piecewise constant with a contact discontinuity, then there exist smooth solutions to Navier-Stokes equations which converge to the inviscid solutions at a rate of k1/4 as the heat-conductivity coefficient k tends to zero. The key is to construct a viscous contact wave of general gas suitable to our proof (see Section 2). Notice that we have no need to restrict the strength of the contact discontinuity to be small.
文摘The various factors influencing the settlement of composite foundation have been more completely studied through numerical simulation. The influence on the settlement of composite foundation of the geometry and mechanical properties of the pile, soil, cushion, and the interface between pile and soil have been investigated through computer simulation, in which the contact elements with zero thickness are used. Some valuable conclusions for the settlement of composite foundation have been obtained: (1) The method using the contact element of zero thickness is successful when used in the simulation of the settlement of composite foundation; (2) Among the factors influencing the settlement of composite foundation, the compression modulus of the soil is the largest, and the cohesion of the soil is the second largest; (3) The effects on settlement of the internal friction angle of the soil, the elastic modulus, the radius, and the length of the pile, and the elestic modulus of the cushion are also more obvious.
文摘Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-drain contact CNTFETs outperform the Schottky contact devices with and without strain applied. The off-state current in both types of contact is similar with and without strain applied. This is because both types of contact offer very similar potential barrier in off-state. However, the on-state current in doped contact devices is much higher due to better modulation of on-state potential profile, and its variation with strain is sensitive to the device contact type. The on/off current ratio and the inverse subthreshold slope are better with doped source-drain contact, and their variations with strain are relatively less sensitive to the device contact type. The channel transconductance and device switching performance are much better with doped source-drain contact, and their variations with strain are sensitive to device contact type.
基金Fundamental Research Funds for the Central Universities(2015ZCQ-LY-01 and BLX2015-27)the National Natural Sciences Foundation of China(11601031)
文摘For the general gas including ideal polytropic gas, we study the zero dissipation limit problem of the full 1-D compressible Navier-Stokes equations toward the superposition of contact discontinuity and two rarefaction waves. In the case of both smooth and Riemann initial data, we show that if the solutions to the corresponding Euler system consist of the composite wave of two rarefaction wave and contact discontinuity, then there exist solutions to Navier-Stokes equations which converge to the Riemman solutions away from the initial layer with a decay rate in any fixed time interval as the viscosity and the heat-conductivity coefficients tend to zero. The proof is based on scaling arguments, the construction of the approximate profiles and delicate energy estimates. Notice that we have no need to restrict the strengths of the contact discontinuity and rarefaction waves to be small.