In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theor...In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theoretical,numerical study and analytical analysis.A new model of distribution of rock stress state after wet shotcrete was applied,which includes shotcrete layer,composite layer,strengthening layer,plastic layer and elastic layer,and a full illustration of the rock mass stress state was given after shotcrete interacting with rock mass.At the same time,numerical analysis with FLAC gives a stress distribution along the monitor line,respectively,at the sidewall and roof of the tunnel.The displacement obviously decreases with the depth of rock,the tangential stress for tunnel supported by shotcrete is lower than that without shotcrete,and radial stress for tunnel supported by shotcrete is higher than that without shotcrete.It has been demonstrated by AIRY'S stress function,which gives a reasonable solution.Finally,the application of wet shotcrete in Jinfeng Gold Mine shows that the displacement of tunnel decreases obviously in sidewall and roof.展开更多
Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of wea...Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of weak rocks at great depth, a tunneling scheme with rock bolting and steel fibre reinforced sprayed concrete is proposed. This scheme is practiced successfully at a deep tunnel in weak rocks in Coal Mine No 10 of Hebi Coal Mining Administration.展开更多
Based on a great number of measured data, the author put forward zonal com-pressive and tensile deformation mechanism of soft rock around roadway. By using self-supporting capacity of compressive zone and controlling ...Based on a great number of measured data, the author put forward zonal com-pressive and tensile deformation mechanism of soft rock around roadway. By using self-supporting capacity of compressive zone and controlling rock deformation of tensile zone, the long bolt or short bolt group supporting form was given for different size of rock compressive zone and tensile zone. Finally, studied on the determining method of rational support parameters of bolting and shotcreting with wire mesh in different support technol-ogy.展开更多
The design and accomplishment of shotcrete robot is presented in this paper. This shotcrete robot is the first robot for underground coal mine in our country. It is a specific machine used for spraying concrete in und...The design and accomplishment of shotcrete robot is presented in this paper. This shotcrete robot is the first robot for underground coal mine in our country. It is a specific machine used for spraying concrete in underground coal mine. It has many advantages such as simple structure convenient operation and high reliability. The on-site experiments indicate that the sprayed layer is even, at the same time, the quantity of rebound and dust content decrease largely. The robot can satisfy the requirement of shotcrete process completely.展开更多
The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rhe...The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rheological deformation. Furthermore, on the basis of analyzing physico chemical component of surrounding rock and the situation of the damaged roadway, the method of adopting strong bolting and shotcreting mesh for the primary support, bolting and grouting for the secondary support is put forward in light of the on the spot investigation of stress tension, mechanical parameter and engineering geology. The application reveals the method facilitates the continuation of west main roadway and the restoration of shaft station and chambers. Consequently, better techno economic results have been achieved.展开更多
The design procedure is made for a mine shaft where permanent underground facilities are interconnected. The highly faulted grounds were identified using empirical and semi-empirical theories. Furthermore, the behavio...The design procedure is made for a mine shaft where permanent underground facilities are interconnected. The highly faulted grounds were identified using empirical and semi-empirical theories. Furthermore, the behavior types are presented. This paper presents excavation and support methods in such ground conditions and the calculations results show that the installation of the yielding elements have an effect on support elements and prevent shotcrete damage during the curing stage. Different numerical analyses carried out showed that, with the yielding elements installed, the total displacements increase but the final axial force reduces, and therefore, the characteristic compressive strength of shotcrete is not exceeded. The calculation results of ground loads and displacements on the designed support system are presented with a 3D numerical geo-mechanical model adopted for highly faulted ground surrounding deeper complex underground structures.展开更多
This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used t...This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used to simulate concrete piles and jet-grouting in the numerical analyses. The field study and numerical investigations show that by applying jet-grouting sur- rounding the upper 7.5D (D = pile diameter) of a pile, lateral stiffness and beating capacity of the pile are increased by about 110% and 100%, respectively. This is partially because the jet-grouting increases the apparent diameter of the pile, so as to en- large the extent of failure wedge and hence passive resistance in front of the reinforced pile. Moreover, the jet-grouting pro- vides a circumferential confinement to the concrete pile, which suppresses development of tensile stress in the pile. Corre- spondingly, tension-induced plastic damage in the concrete pile is reduced, causing less degradation of stiffness and strength of the pile than that of a plain pile. Effectiveness of the circumferential confinement provided by the jet-grouting, however, diminishes once the grouting cracks because of the significant vertical and circumferential tensile stress near its mid-depth. The lateral capacity of the jet-grouting reinforced pile is, therefore, governed by mobilized passive resistance of soil and plastic damage of jet-grouting.展开更多
基金Project(50934002) supported by the National Natural Science Foundation of China
文摘In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theoretical,numerical study and analytical analysis.A new model of distribution of rock stress state after wet shotcrete was applied,which includes shotcrete layer,composite layer,strengthening layer,plastic layer and elastic layer,and a full illustration of the rock mass stress state was given after shotcrete interacting with rock mass.At the same time,numerical analysis with FLAC gives a stress distribution along the monitor line,respectively,at the sidewall and roof of the tunnel.The displacement obviously decreases with the depth of rock,the tangential stress for tunnel supported by shotcrete is lower than that without shotcrete,and radial stress for tunnel supported by shotcrete is higher than that without shotcrete.It has been demonstrated by AIRY'S stress function,which gives a reasonable solution.Finally,the application of wet shotcrete in Jinfeng Gold Mine shows that the displacement of tunnel decreases obviously in sidewall and roof.
文摘Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of weak rocks at great depth, a tunneling scheme with rock bolting and steel fibre reinforced sprayed concrete is proposed. This scheme is practiced successfully at a deep tunnel in weak rocks in Coal Mine No 10 of Hebi Coal Mining Administration.
文摘Based on a great number of measured data, the author put forward zonal com-pressive and tensile deformation mechanism of soft rock around roadway. By using self-supporting capacity of compressive zone and controlling rock deformation of tensile zone, the long bolt or short bolt group supporting form was given for different size of rock compressive zone and tensile zone. Finally, studied on the determining method of rational support parameters of bolting and shotcreting with wire mesh in different support technol-ogy.
文摘The design and accomplishment of shotcrete robot is presented in this paper. This shotcrete robot is the first robot for underground coal mine in our country. It is a specific machine used for spraying concrete in underground coal mine. It has many advantages such as simple structure convenient operation and high reliability. The on-site experiments indicate that the sprayed layer is even, at the same time, the quantity of rebound and dust content decrease largely. The robot can satisfy the requirement of shotcrete process completely.
文摘The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rheological deformation. Furthermore, on the basis of analyzing physico chemical component of surrounding rock and the situation of the damaged roadway, the method of adopting strong bolting and shotcreting mesh for the primary support, bolting and grouting for the secondary support is put forward in light of the on the spot investigation of stress tension, mechanical parameter and engineering geology. The application reveals the method facilitates the continuation of west main roadway and the restoration of shaft station and chambers. Consequently, better techno economic results have been achieved.
文摘The design procedure is made for a mine shaft where permanent underground facilities are interconnected. The highly faulted grounds were identified using empirical and semi-empirical theories. Furthermore, the behavior types are presented. This paper presents excavation and support methods in such ground conditions and the calculations results show that the installation of the yielding elements have an effect on support elements and prevent shotcrete damage during the curing stage. Different numerical analyses carried out showed that, with the yielding elements installed, the total displacements increase but the final axial force reduces, and therefore, the characteristic compressive strength of shotcrete is not exceeded. The calculation results of ground loads and displacements on the designed support system are presented with a 3D numerical geo-mechanical model adopted for highly faulted ground surrounding deeper complex underground structures.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51325901)the International Science and Technology Cooperation Program of China(Grant No.2015DFE72830)State Key Program of National Natural Science of China(Grant No.51338009)
文摘This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used to simulate concrete piles and jet-grouting in the numerical analyses. The field study and numerical investigations show that by applying jet-grouting sur- rounding the upper 7.5D (D = pile diameter) of a pile, lateral stiffness and beating capacity of the pile are increased by about 110% and 100%, respectively. This is partially because the jet-grouting increases the apparent diameter of the pile, so as to en- large the extent of failure wedge and hence passive resistance in front of the reinforced pile. Moreover, the jet-grouting pro- vides a circumferential confinement to the concrete pile, which suppresses development of tensile stress in the pile. Corre- spondingly, tension-induced plastic damage in the concrete pile is reduced, causing less degradation of stiffness and strength of the pile than that of a plain pile. Effectiveness of the circumferential confinement provided by the jet-grouting, however, diminishes once the grouting cracks because of the significant vertical and circumferential tensile stress near its mid-depth. The lateral capacity of the jet-grouting reinforced pile is, therefore, governed by mobilized passive resistance of soil and plastic damage of jet-grouting.