In the present work, the consideration is being given to the possibility that neutrinos are specific magnetic γ-quanta (magnetic solitons), devoid electric components. It is shown that the creation of these ...In the present work, the consideration is being given to the possibility that neutrinos are specific magnetic γ-quanta (magnetic solitons), devoid electric components. It is shown that the creation of these magnetic γ-quanta in the empty space (in the ether) can be understood on the basis of standard Maxwell theory. As a rule, electrodynamics states that the electromagnetic waves are created by oscillations of dipoles. These waves have obligatorily electric and magnetic components. A magnetic γ-quantum radiates when a nuclear reaction creates a relativistic particle possessing a magnetic moment that the original particle does not have. Due to the lack of magnetic monopoles in nature, magnetic γ-quanta weakly interact with matter. This property allows to identify them with neutrinos. This concept finds confirmation in the fact that by following it we get a new insight into the nature of π-meson and μ-meson, and become able to calculate their masses with a good precision. It is supposed needed to repeat the Lederman’s experiment at low energy of neutrinos.展开更多
文摘In the present work, the consideration is being given to the possibility that neutrinos are specific magnetic γ-quanta (magnetic solitons), devoid electric components. It is shown that the creation of these magnetic γ-quanta in the empty space (in the ether) can be understood on the basis of standard Maxwell theory. As a rule, electrodynamics states that the electromagnetic waves are created by oscillations of dipoles. These waves have obligatorily electric and magnetic components. A magnetic γ-quantum radiates when a nuclear reaction creates a relativistic particle possessing a magnetic moment that the original particle does not have. Due to the lack of magnetic monopoles in nature, magnetic γ-quanta weakly interact with matter. This property allows to identify them with neutrinos. This concept finds confirmation in the fact that by following it we get a new insight into the nature of π-meson and μ-meson, and become able to calculate their masses with a good precision. It is supposed needed to repeat the Lederman’s experiment at low energy of neutrinos.