A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance i...A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.展开更多
Novel accurate and efficient equivalent circuit trained artificial neural-network (EC-ANN) models,which inherit and improve upon EC model and EM-ANN models' advantages,are developed for coplanar waveguide (CPW) d...Novel accurate and efficient equivalent circuit trained artificial neural-network (EC-ANN) models,which inherit and improve upon EC model and EM-ANN models' advantages,are developed for coplanar waveguide (CPW) discontinuities. Modeled discontinuities include : CPW step, interdigital capacitor, symmetric cross junction, and spiral inductor, for which validation tests are performed. These models allow for circuit design, simulation, and optimization within a CAD simulator. Design and realization of a coplanar lumped element band pass filter on GaAs using the developed CPW EC-ANN models are demonstrated.展开更多
The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of cap...The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost.展开更多
The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principl...The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principle is quite different from that of the traditional motors. In this paper the equivalent circuits of the ring stator and even the whole motor are proposed after studying the equivalent circuit of piezoelectric vibrator. Then the paper makes detailed analyses of each part of the control system, which has been simplified by the equivalent circuit. The theory in this paper has been proved through experiments.展开更多
An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEH...An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software. The extraction results are verified by ADS software,and the DC I-V curves and S parameters simulated by ADS are basically accordant with those of the test results. These results indicate that the EEHEMT1 model can be used for extracting the component parameters of an enhancement-mode PHEMT.展开更多
A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experiment...A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.展开更多
With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in ...With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.展开更多
The concepts of substrate eddy influence factor and distribution-effects-occurring frequency are presented. The effects of substrate resistivity and inductor spiral length on the substrate eddy and distribution effect...The concepts of substrate eddy influence factor and distribution-effects-occurring frequency are presented. The effects of substrate resistivity and inductor spiral length on the substrate eddy and distribution effects are captured. The substrate eddy influence factors of an inductor (6 turn, 3 060 μm in length) fabricated on low ( 1 Ω. cm) and high resistivity( 1 000 Ω.cm) silicon substrates are 0. 3 and 0. 04, and the distribution-effects- occurring frequencies are 1.8 GHz and 14. 5 GHz, respectively. The measurement results show that the equivalent circuit model of the inductor on low resistivity silicon must take into consideration substrate eddy effects and distribution effects. However, the circuit model of the inductor on high resistivity silicon cannot take into account the substrate eddy effects and the distribution effects at the frequencies of interest. Its simple model shows agreement with the measurements, and the contrast is within 7%.展开更多
An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization p...An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization process. The parameters of the model are identified using combined experimental and extended Kalman filter (EKF) recursive methods. The open-circuit voltage and ohmic resistance of the battery are directly measured and calculated from experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC network parameters, are estimated using the EKF method. Experimental and simulation results are presented to demonstrate the efficacy of the proposed circuit model and parameter identification techniques for simulating battery dynamics.展开更多
A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumpe...A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumped port to model the nonlinear junction for impedance matching without the need of diode equivalent circuit model. All the matching circuit is designed "on-chip" and the mul- tiplier is self-biasing. To the doubler, a conversion efficiency of 6.1% and output power of 5.4mW are measured at 214GHz with input power of 88mW, and the typical measured efficiency is 4.5% in 200 - 225 GHz.展开更多
The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled s...The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.展开更多
A model of monolithic transformers is presented, which is analyzed with characteristic functions. A closed- form analytical approach to extract all the model parameters for the equivalent circuit of Si-based on-chip t...A model of monolithic transformers is presented, which is analyzed with characteristic functions. A closed- form analytical approach to extract all the model parameters for the equivalent circuit of Si-based on-chip transformers is proposed. A novel de-coupling technique is first developed to reduce the complexity in the Y parameters for the transformer, and the model parameters can then be extracted analytically by a set of characteristic functions. Simulation based on the extracted parameters has been carried out for transformers with different structures, and good accuracy is obtained compared to a 3-demensional full-wave numerical electro- magnetic field solver. The presented approach will be very useful to provide a scalable and wide-band compact circuit model for Si-based RF transformers.展开更多
This paper presents the modelling of transduction heaters using the TEC (transformer equivalent circuit) model and FEA (finite element analysis). Each model was used to simulate a set oftransduction heating experi...This paper presents the modelling of transduction heaters using the TEC (transformer equivalent circuit) model and FEA (finite element analysis). Each model was used to simulate a set oftransduction heating experiments and the results compared. Analysis of the TEC calculated results suggested modification of three parameters: the secondary resistance, the core tube eddy current resistance and the core tube magnetizing reactance. The improved TEC model was then used to design, build and test a 6 kW transduction heater. The measured results are compared with calculated results from the TEC and FEA models. The TEC model accurately predicts the performance of the heater.展开更多
The V-shaped electro-optical properties control is investigated by an equivalent circuit model.Simu-lation results show that genuine V-shaped form is only observed at hysteresis inversion frequency,and be-low and abov...The V-shaped electro-optical properties control is investigated by an equivalent circuit model.Simu-lation results show that genuine V-shaped form is only observed at hysteresis inversion frequency,and be-low and above this frequency an anomalous and normal hysteresis are observed.And the inversion fre-quency decreases with the resistance of ferroelectric liquid crystal(FLC)layer following logf_i=-alogR_(LC)+b .The results are in good accordance with the reported experimental results.展开更多
A 100Ah@42V lead-acid battery package for electric vehicles are used for study. 1he hybrid pulse test is applied to the battery package to acquire enough data, by which the partnership for a new generation of vehicles...A 100Ah@42V lead-acid battery package for electric vehicles are used for study. 1he hybrid pulse test is applied to the battery package to acquire enough data, by which the partnership for a new generation of vehicles (PNGV) equivalent circuit model parameters are identified by the least square method. Then, the PNGV model is verified under two conditions, i.e., the composite pulse excitation and the constant-current respectively. The corresponding maximum relative errors of output voltage are less than 3 % and 3.5 %. Results show that the present PNGV equivalent circuit model and verification method is effective, which can satisfy requirement of simulation of power system of electric vehicles.展开更多
In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published w...In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published work. All parameters of these circuits can be interpreted as the results of open and short-circuit tests on the transformer. Based on this consideration, numerical procedures are then proposed to derive frequency-dependent lumped parameters from FE simulations. By using an adequate formulation, parameters are directly obtained from the FE model degrees of freedom, without performing any volume integration in post-processing, which can be source of numerical errors. In this contribution, attention is paid on the modeling of magnetic coupling using inductances, and dissipative effects (winding and core losses) using resistances. The impact of conductor eddy currents on the circuit parameters is moreover studied in details. Instead of an analysis of the impact conductor eddy currents may have on the circuit parameters is moreover carried through.展开更多
For many current betavoltaics, beta sources and PN junction energy conversion units are separated. The air gap between the two parts could stop part of decay beta particles, which results in inefficient performance of...For many current betavoltaics, beta sources and PN junction energy conversion units are separated. The air gap between the two parts could stop part of decay beta particles, which results in inefficient performance of the betavoltaic. By employing 63Ni with an apparent emission activity density of 7.26×10~7 and 1.81×10~8 Bq cm^(-2), betavoltaic performance levels were calculated at a vacuum degree range of 1×10~5 to 1×10^(-1) Pa and measured at 1.0×10~5 and 1.0×10~4 Pa, respectively. Results show that betavoltaic performance levels improve significantly as the vacuum degree increases. The maximum output power (P_(max)) exhibits the largest change, followed by short-circuit current (I_(sc)), open-circuit voltage (V_(oc)), and fill factor. The vacuum degree effects on Isc, Voc,and Pmax of the betavoltaic with low apparent activity density 63Ni are more significant than those of the betavoltaic with high apparent activity density ^(63)Ni. Moreover, the improved efficiencies of the measured performances are larger than the calculated efficiencies because of the low ratio of Isc and reverse saturation current (I_0). The values of I0, ideality factor, and shunt resistance were estimated to modify the equivalent circuit model. The calculation results based on this model are closer to the measurement results. The results of this research can provide a theoretical foundation and experimental reference for the study of vacuum degree effects on betavoltaics of the same kind.展开更多
In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equiv...In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equivalent one-diode circuit of the solar cell and the analysis of the two-body model. At first, the equations of current and voltage are deduced from the related electrical laws and the circuit diagram of the two solar cells connected in parallel. Then, according to the experimentally measured data of typical single-crystalline silicon solar cells (125 mm×125 mm), we select the appropriate simulation parameters. Following this, by using the photo-generated current, the shunt resistance, and the serial resistance of one of the shunt solar cells and the load resistance as independent variables, in turn, the changing characteristics of each branch current in the two shunt solar cells are numerically discussed and analyzed for these four cases for the first time. At the same time, we provide a simple physical explanation for the modeling results. Our analyses show that these parameters have different impacts on the internal currents of solar cells connected in parallel. These results provide a reference to solve the problem of connecting solar cells and to develop higher efficiency solar cells and systems. Meanwhile, the results will contribute to a better comprehension of the reasons for efficiency loss of solar cells and systems, and deepen the understanding of the electrical of solar cells behavior for high performance photovoltaic applications.展开更多
According to the equivalent circuit model(ECM),finite element model(FEM) and physical experiment,the LIDEP force induced by the spatial variations of the phase of AC electric fields produced by the bright and dark reg...According to the equivalent circuit model(ECM),finite element model(FEM) and physical experiment,the LIDEP force induced by the spatial variations of the phase of AC electric fields produced by the bright and dark regions on the photoconductive layer was demonstrated.Besides,the phenomenon of the light-induced electro-rotation(LIER) caused by the light-induced rotating electric field was confirmed numerically and experimentally for the first time.It may be helpful to go out of the dilemma that only the dipole moment model,based on the effect of light-induced partial potentials,can be used for LIDEP theoretical calculation currently.Through the FEM simulation and the electro-rotating experiment of yeast cells,it was found that the direction of yeast's LIER is relevant to the distance between its location and the edge of optical electrode,and the spin velocity of LIER is inversely proportional to that distance.Nevertheless,the LIER torques in the three-electrode mode show a non-uniform distribution where the LIDEP forces are harmful for a particle spinning stably around a fixed axis.Moreover,a four-electrode double-layer mode was proposed for the first time and the finite element simulation results agreed with the expected design,suggesting a new way for the dielectric spectrum measurement based on LIER.展开更多
文摘A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.
文摘Novel accurate and efficient equivalent circuit trained artificial neural-network (EC-ANN) models,which inherit and improve upon EC model and EM-ANN models' advantages,are developed for coplanar waveguide (CPW) discontinuities. Modeled discontinuities include : CPW step, interdigital capacitor, symmetric cross junction, and spiral inductor, for which validation tests are performed. These models allow for circuit design, simulation, and optimization within a CAD simulator. Design and realization of a coplanar lumped element band pass filter on GaAs using the developed CPW EC-ANN models are demonstrated.
基金Projects(51204209,51274240)supported by the National Natural Science Foundation of ChinaProject(HNDLKJ[2012]001-1)supported by Henan Electric Power Science&Technology Supporting Program,China
文摘The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost.
文摘The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principle is quite different from that of the traditional motors. In this paper the equivalent circuits of the ring stator and even the whole motor are proposed after studying the equivalent circuit of piezoelectric vibrator. Then the paper makes detailed analyses of each part of the control system, which has been simplified by the equivalent circuit. The theory in this paper has been proved through experiments.
文摘An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software. The extraction results are verified by ADS software,and the DC I-V curves and S parameters simulated by ADS are basically accordant with those of the test results. These results indicate that the EEHEMT1 model can be used for extracting the component parameters of an enhancement-mode PHEMT.
文摘A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.
基金Project(51507073)supported by the National Natural Science Foundation of China。
文摘With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.
基金The National Natural Science Foundation of China(No.60676043)the National High Technology Research and Development Program of China(863Program)(No.2007AA04Z328)
文摘The concepts of substrate eddy influence factor and distribution-effects-occurring frequency are presented. The effects of substrate resistivity and inductor spiral length on the substrate eddy and distribution effects are captured. The substrate eddy influence factors of an inductor (6 turn, 3 060 μm in length) fabricated on low ( 1 Ω. cm) and high resistivity( 1 000 Ω.cm) silicon substrates are 0. 3 and 0. 04, and the distribution-effects- occurring frequencies are 1.8 GHz and 14. 5 GHz, respectively. The measurement results show that the equivalent circuit model of the inductor on low resistivity silicon must take into consideration substrate eddy effects and distribution effects. However, the circuit model of the inductor on high resistivity silicon cannot take into account the substrate eddy effects and the distribution effects at the frequencies of interest. Its simple model shows agreement with the measurements, and the contrast is within 7%.
文摘An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization process. The parameters of the model are identified using combined experimental and extended Kalman filter (EKF) recursive methods. The open-circuit voltage and ohmic resistance of the battery are directly measured and calculated from experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC network parameters, are estimated using the EKF method. Experimental and simulation results are presented to demonstrate the efficacy of the proposed circuit model and parameter identification techniques for simulating battery dynamics.
基金Supported by the 12th Five-year Defense Pre-research Fund of China(No.51308030509)
文摘A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumped port to model the nonlinear junction for impedance matching without the need of diode equivalent circuit model. All the matching circuit is designed "on-chip" and the mul- tiplier is self-biasing. To the doubler, a conversion efficiency of 6.1% and output power of 5.4mW are measured at 214GHz with input power of 88mW, and the typical measured efficiency is 4.5% in 200 - 225 GHz.
基金Project(51105375)supported by the National Natural Science Foundation of ChinaProject(CSTC2010BB8204)supported by Chongqing Natural Science Foundation,China
文摘The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.
文摘A model of monolithic transformers is presented, which is analyzed with characteristic functions. A closed- form analytical approach to extract all the model parameters for the equivalent circuit of Si-based on-chip transformers is proposed. A novel de-coupling technique is first developed to reduce the complexity in the Y parameters for the transformer, and the model parameters can then be extracted analytically by a set of characteristic functions. Simulation based on the extracted parameters has been carried out for transformers with different structures, and good accuracy is obtained compared to a 3-demensional full-wave numerical electro- magnetic field solver. The presented approach will be very useful to provide a scalable and wide-band compact circuit model for Si-based RF transformers.
文摘This paper presents the modelling of transduction heaters using the TEC (transformer equivalent circuit) model and FEA (finite element analysis). Each model was used to simulate a set oftransduction heating experiments and the results compared. Analysis of the TEC calculated results suggested modification of three parameters: the secondary resistance, the core tube eddy current resistance and the core tube magnetizing reactance. The improved TEC model was then used to design, build and test a 6 kW transduction heater. The measured results are compared with calculated results from the TEC and FEA models. The TEC model accurately predicts the performance of the heater.
基金supported by the National Natural Science Foundation of China(No.1017405790201011)+1 种基金the Key Project of Chinese Ministry of Education(No.2005-105148)the Research Fund for the Doctoral Program of Higher Education of China(No.20070613058)
文摘The V-shaped electro-optical properties control is investigated by an equivalent circuit model.Simu-lation results show that genuine V-shaped form is only observed at hysteresis inversion frequency,and be-low and above this frequency an anomalous and normal hysteresis are observed.And the inversion fre-quency decreases with the resistance of ferroelectric liquid crystal(FLC)layer following logf_i=-alogR_(LC)+b .The results are in good accordance with the reported experimental results.
文摘A 100Ah@42V lead-acid battery package for electric vehicles are used for study. 1he hybrid pulse test is applied to the battery package to acquire enough data, by which the partnership for a new generation of vehicles (PNGV) equivalent circuit model parameters are identified by the least square method. Then, the PNGV model is verified under two conditions, i.e., the composite pulse excitation and the constant-current respectively. The corresponding maximum relative errors of output voltage are less than 3 % and 3.5 %. Results show that the present PNGV equivalent circuit model and verification method is effective, which can satisfy requirement of simulation of power system of electric vehicles.
文摘In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published work. All parameters of these circuits can be interpreted as the results of open and short-circuit tests on the transformer. Based on this consideration, numerical procedures are then proposed to derive frequency-dependent lumped parameters from FE simulations. By using an adequate formulation, parameters are directly obtained from the FE model degrees of freedom, without performing any volume integration in post-processing, which can be source of numerical errors. In this contribution, attention is paid on the modeling of magnetic coupling using inductances, and dissipative effects (winding and core losses) using resistances. The impact of conductor eddy currents on the circuit parameters is moreover studied in details. Instead of an analysis of the impact conductor eddy currents may have on the circuit parameters is moreover carried through.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11505096 & 11675076)the National Defense Basic Scientific Research Project (Grant No. JCKY2016605C006)+5 种基金the Natural Science Foundation of Jiangsu Province (Grant No. BK20150735)the Shanghai Aerospace Science and Technology Innovation Fundthe Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1601139B)the Foundation of Graduate Innovation Center in NUAA (Grant No.kfjj20160609)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Grant No. NJ20160031)
文摘For many current betavoltaics, beta sources and PN junction energy conversion units are separated. The air gap between the two parts could stop part of decay beta particles, which results in inefficient performance of the betavoltaic. By employing 63Ni with an apparent emission activity density of 7.26×10~7 and 1.81×10~8 Bq cm^(-2), betavoltaic performance levels were calculated at a vacuum degree range of 1×10~5 to 1×10^(-1) Pa and measured at 1.0×10~5 and 1.0×10~4 Pa, respectively. Results show that betavoltaic performance levels improve significantly as the vacuum degree increases. The maximum output power (P_(max)) exhibits the largest change, followed by short-circuit current (I_(sc)), open-circuit voltage (V_(oc)), and fill factor. The vacuum degree effects on Isc, Voc,and Pmax of the betavoltaic with low apparent activity density 63Ni are more significant than those of the betavoltaic with high apparent activity density ^(63)Ni. Moreover, the improved efficiencies of the measured performances are larger than the calculated efficiencies because of the low ratio of Isc and reverse saturation current (I_0). The values of I0, ideality factor, and shunt resistance were estimated to modify the equivalent circuit model. The calculation results based on this model are closer to the measurement results. The results of this research can provide a theoretical foundation and experimental reference for the study of vacuum degree effects on betavoltaics of the same kind.
基金supported by the National Natural Science Foundation of China (Grant No. 51561031)the Natural Science Foundation of Guangxi Province (Grant No. 2015GXNSFBA139240)+1 种基金Open Foundation of Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Large Data Processing (Grant No. 2015CSOBD0102)the Highlevel Personnel Scientific Research Funds of Yulin Normal University (Grant No. G20150001)
文摘In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equivalent one-diode circuit of the solar cell and the analysis of the two-body model. At first, the equations of current and voltage are deduced from the related electrical laws and the circuit diagram of the two solar cells connected in parallel. Then, according to the experimentally measured data of typical single-crystalline silicon solar cells (125 mm×125 mm), we select the appropriate simulation parameters. Following this, by using the photo-generated current, the shunt resistance, and the serial resistance of one of the shunt solar cells and the load resistance as independent variables, in turn, the changing characteristics of each branch current in the two shunt solar cells are numerically discussed and analyzed for these four cases for the first time. At the same time, we provide a simple physical explanation for the modeling results. Our analyses show that these parameters have different impacts on the internal currents of solar cells connected in parallel. These results provide a reference to solve the problem of connecting solar cells and to develop higher efficiency solar cells and systems. Meanwhile, the results will contribute to a better comprehension of the reasons for efficiency loss of solar cells and systems, and deepen the understanding of the electrical of solar cells behavior for high performance photovoltaic applications.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No. 91023024)the New Century Elitist Program by Ministry of Education of China (Grant No.NCET-07-0180)the Technology Supported Research Program from Jiangsu Province (Grant No. BE2009054)
文摘According to the equivalent circuit model(ECM),finite element model(FEM) and physical experiment,the LIDEP force induced by the spatial variations of the phase of AC electric fields produced by the bright and dark regions on the photoconductive layer was demonstrated.Besides,the phenomenon of the light-induced electro-rotation(LIER) caused by the light-induced rotating electric field was confirmed numerically and experimentally for the first time.It may be helpful to go out of the dilemma that only the dipole moment model,based on the effect of light-induced partial potentials,can be used for LIDEP theoretical calculation currently.Through the FEM simulation and the electro-rotating experiment of yeast cells,it was found that the direction of yeast's LIER is relevant to the distance between its location and the edge of optical electrode,and the spin velocity of LIER is inversely proportional to that distance.Nevertheless,the LIER torques in the three-electrode mode show a non-uniform distribution where the LIDEP forces are harmful for a particle spinning stably around a fixed axis.Moreover,a four-electrode double-layer mode was proposed for the first time and the finite element simulation results agreed with the expected design,suggesting a new way for the dielectric spectrum measurement based on LIER.