The Three Gorges Project of the Yangtze River is the largest hydropower-complex project under construction in the world. Under the largescale relocation projects, 2874 engineered slopes are formed along with the const...The Three Gorges Project of the Yangtze River is the largest hydropower-complex project under construction in the world. Under the largescale relocation projects, 2874 engineered slopes are formed along with the construction of new towns. In this paper, the cutting slopes are mainly soil slopes and rock slopes. Soil slopes include residual soil slopes, colluvial accumulation slopes, swelling soil slopes, and artificial earth fill slopes, etc. Rock slopes include blocky structure rock slopes, layer structure rock slopes, and clastic structure rock slopes, etc. Varied protection measures have been used for slope protection in the reservoir area including shotcrete concrete-anchor bars, frame beams, retaining walls, slope stabilizing piles, sheet-pile walls, anchorage anti-shear tunnels, flexible protection grids, and drainage, etc. Besides, slope deformation monitoring systems have been set up to monitor deformation failure and the stability state of slopes. The protection measures have guaranteed slope safety and maintained a harmony with the urban environment and surrounding landscape.展开更多
Recently, due to more flooding, schistosomiasis is in expanding tendency in some areas. With Three Gorges Engineering progress, schistosomiasis will occurr potentially in Three Gorges reservoir. In order to control th...Recently, due to more flooding, schistosomiasis is in expanding tendency in some areas. With Three Gorges Engineering progress, schistosomiasis will occurr potentially in Three Gorges reservoir. In order to control the disease, some methods must be applied, e.g. chemicals, biological measures. To some extent every way has its specific effect. However, the vital way is improving the environment and reducing the amount of snails. One of the effective ways is conducting forestry ecological engineering that focuses on snail control and schistosomiasis prevention. The practical ways cover such as pollution controlling, ditches surface hardening. Especially for water-level-fluctuation zone, conducting forestry ecological engineering to improve environment to prevent snails’ propagation is significant and vital. By operating the project environment could be greatly improved and people’s living conditions would be bettered.展开更多
Phosphorus(P) in agricultural soils is an important factor for soil quality and environmental protection. Understanding of P and its fractions in soils on a regional scale is imperative for effective management or uti...Phosphorus(P) in agricultural soils is an important factor for soil quality and environmental protection. Understanding of P and its fractions in soils on a regional scale is imperative for effective management or utilization of P and the improvement of P availability in soils. To study spatial variability and changes of soil P and its fractions as affected by farming practices, soil samples were taken in Rugao County, Jiangsu Province of China, an intensive agricultural area in the Yangtze River Delta region, in years of 1982(n = 1 514), 1997(n = 1 651), and 2002(n = 342). High spatial variabilities of Olsen P and total P(TP) were observed throughout the study area. Loamy Stagnic Anthrosols and clay or loamy Aquic Cambosols had significantly higher concentrations of Olsen P and TP than sandy Ustic Cambosols and Aquic Cambosols. Olsen P and TP were increased from 1982 to 2002. The accumulations of Olsen P and TP in the cultivated soils were likely related to the increased application of P fertilizer, organic input,and soil incorporation of crop residues as well as conversion of soil use. Accumulated soil P was dominantly in labile and semi-labile P fractions. These P fractions may be utilized by future crop production by adjusting management practices, but they also pose a serious threat to nearby water bodies. Future strategies should include decreasing P fertilization in soils and supporting sustainable management. The information from this study can be used to monitor changes in soil fertility and environmental risks so that the use of fertilizers can become more rational.展开更多
基金supported by the Project of Scientific Research of High Cutting Slope Protection of the Third Stage Geological Hazards in Three Gorges Reservoir Area (Grant No.2008SXG01-5)State Council Three Gorges Project Construction Committee Executive Officesupported under the grant of TGRC201025 from the Three Gorges Research Center for geo-hazard, Ministry of Education, China
文摘The Three Gorges Project of the Yangtze River is the largest hydropower-complex project under construction in the world. Under the largescale relocation projects, 2874 engineered slopes are formed along with the construction of new towns. In this paper, the cutting slopes are mainly soil slopes and rock slopes. Soil slopes include residual soil slopes, colluvial accumulation slopes, swelling soil slopes, and artificial earth fill slopes, etc. Rock slopes include blocky structure rock slopes, layer structure rock slopes, and clastic structure rock slopes, etc. Varied protection measures have been used for slope protection in the reservoir area including shotcrete concrete-anchor bars, frame beams, retaining walls, slope stabilizing piles, sheet-pile walls, anchorage anti-shear tunnels, flexible protection grids, and drainage, etc. Besides, slope deformation monitoring systems have been set up to monitor deformation failure and the stability state of slopes. The protection measures have guaranteed slope safety and maintained a harmony with the urban environment and surrounding landscape.
文摘Recently, due to more flooding, schistosomiasis is in expanding tendency in some areas. With Three Gorges Engineering progress, schistosomiasis will occurr potentially in Three Gorges reservoir. In order to control the disease, some methods must be applied, e.g. chemicals, biological measures. To some extent every way has its specific effect. However, the vital way is improving the environment and reducing the amount of snails. One of the effective ways is conducting forestry ecological engineering that focuses on snail control and schistosomiasis prevention. The practical ways cover such as pollution controlling, ditches surface hardening. Especially for water-level-fluctuation zone, conducting forestry ecological engineering to improve environment to prevent snails’ propagation is significant and vital. By operating the project environment could be greatly improved and people’s living conditions would be bettered.
基金supported by the National Natural Science Foundation of China (No. 41071299)the"Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA05050503)the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China during the 12th Five-Year Plan Period (No. 2012BAD05B05-2)
文摘Phosphorus(P) in agricultural soils is an important factor for soil quality and environmental protection. Understanding of P and its fractions in soils on a regional scale is imperative for effective management or utilization of P and the improvement of P availability in soils. To study spatial variability and changes of soil P and its fractions as affected by farming practices, soil samples were taken in Rugao County, Jiangsu Province of China, an intensive agricultural area in the Yangtze River Delta region, in years of 1982(n = 1 514), 1997(n = 1 651), and 2002(n = 342). High spatial variabilities of Olsen P and total P(TP) were observed throughout the study area. Loamy Stagnic Anthrosols and clay or loamy Aquic Cambosols had significantly higher concentrations of Olsen P and TP than sandy Ustic Cambosols and Aquic Cambosols. Olsen P and TP were increased from 1982 to 2002. The accumulations of Olsen P and TP in the cultivated soils were likely related to the increased application of P fertilizer, organic input,and soil incorporation of crop residues as well as conversion of soil use. Accumulated soil P was dominantly in labile and semi-labile P fractions. These P fractions may be utilized by future crop production by adjusting management practices, but they also pose a serious threat to nearby water bodies. Future strategies should include decreasing P fertilization in soils and supporting sustainable management. The information from this study can be used to monitor changes in soil fertility and environmental risks so that the use of fertilizers can become more rational.