A method of restoring scratches on old paintings is proposed,and the corresponding high-accuracy output workflow is also developed.Firstly the scanner is selected as an input device to get the RGB(red,green,blue)image...A method of restoring scratches on old paintings is proposed,and the corresponding high-accuracy output workflow is also developed.Firstly the scanner is selected as an input device to get the RGB(red,green,blue)image of the painting,and for the purpose of capturing high-quality image,scanner characterization is done by using neural network.And then the scratches on the RGB image are restored with the technology of digital inpainting,while the inpainting algorithm is mainly based on gradient vector and fast marching method.Finally the restored image is output with a printer,which is calibrated by using the high order polynomial regression method.In experiment the new replicated painting is well restored in the scratched areas,as well as keeps high resemblance with the original painting.展开更多
This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, ...This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.展开更多
基金"13115"Sci-Tech Innovation Programof Shaanxi Province,China(No.2008ZDKG39)Youth Foundation of Xi'an University of Technology,China(No.104210807)
文摘A method of restoring scratches on old paintings is proposed,and the corresponding high-accuracy output workflow is also developed.Firstly the scanner is selected as an input device to get the RGB(red,green,blue)image of the painting,and for the purpose of capturing high-quality image,scanner characterization is done by using neural network.And then the scratches on the RGB image are restored with the technology of digital inpainting,while the inpainting algorithm is mainly based on gradient vector and fast marching method.Finally the restored image is output with a printer,which is calibrated by using the high order polynomial regression method.In experiment the new replicated painting is well restored in the scratched areas,as well as keeps high resemblance with the original painting.
基金the Natural Science Foundation of China (No.60472037).
文摘This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.