An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 a...An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 and a few Mn- containing phases. Most of the Ca2Mg6Zn3 phase was distributed at grain boundaries while Mn-containing particles were deposited within grains. The as-cast samples were immersed in a Hank's balanced salt solution (HBSS) up to 24 h. The corroded surface morphology and cross-section microstructure were analyzed after different time of immersion so as to understand the corrosion behavior of the alloy. During immersion in the HBSS, the alloy corroded homogeneously at the very beginning and then localized corrosion occurred. The secondary phases protruded on the surface due to the dissolution of α-Mg, suggesting micro- galvanic corrosion occurred with secondary phases acting as the cathode and ct-Mg as the anode. Micro-cracks were formed at the interfaces between Ca2Mg6Zn3 and α-Mg, indicating an undermining tendency of the secondary phases.展开更多
‘Jinxiu' is a processing apricot(Armeniaca vulgaris L.) cultivar derived from the cross of ‘Chuanzhihong'בJintaiyang'.The fruit is oval-shaped with the ground color of orange and 1/4-1/2 sheet red...‘Jinxiu' is a processing apricot(Armeniaca vulgaris L.) cultivar derived from the cross of ‘Chuanzhihong'בJintaiyang'.The fruit is oval-shaped with the ground color of orange and 1/4-1/2 sheet red in the surface. The average fruit weight is65.5 g, and the maximum value is 106 g. The flesh is orange, fine with very less fiber, toughness, less juice and freestone, and tastes sour and sweet. The soluble solid content is 12.5%. The edible rate is 95.8%. The fruit skin hardness is 12.9 kg/cm2 and storable. The preserved apricots have orange color and are tasty. The preserved yield is 40%. The fruit development period is 72 d. The fruit has high yield, and the fruit yield in full fruit period can reach 37 000 kg/hm2. ‘Jinxiu' was examined and approved by Hebei Examination and Approval Committee of Forest Tree Variety in 2013.展开更多
Based on the molecular interaction volume model (MIVM), the activities of components of Pb Sn Sb ternary alloy were predicted. The vapo^liquid phase equilibrium of Pb-Sn-Sb alloy system was calculated using the acti...Based on the molecular interaction volume model (MIVM), the activities of components of Pb Sn Sb ternary alloy were predicted. The vapo^liquid phase equilibrium of Pb-Sn-Sb alloy system was calculated using the activity coefficients of Pb Sn-Sb alloy system in the process of vacuum distillation. The calculated results show that the content of Sn in vapor phase increases with the increasing distillation temperature and content of Sn in liquid phase. However, the content of Sn in vapor phase is only 0.45% (mass fraction) while 97% in liquid phase at 1100 ℃, which shows that the separating effect is very well. Experimental investigations on the separation of Pb-Sn-Sb ternary alloy were carried out in the distillation temperature range of 1100-1300 ℃ under vacuum condition. It is found that the Sn content in vapor phase is 0.54% while 97% in liquid phase at 1100 ℃. Finally, the predicted data were compared with the experimental results showing good agreement with each other.展开更多
The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture...The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture conditions. The diameter of colony, biomass ofP. chrysosporium, ligninolytic enzyme activities and bioaccumulation quantity of heavy metals were detected. The results indicated that Cd was more toxic than Pb to P. chrysosporium and the toxicity of Cd and Pb to P. chrysosporium was further strengthened under Cd+Pb combined pollution in different culture conditions. Heavy metals Cd and Pb had indirect influence on the production of ligninolytic enzymes by directly affecting the fungal growth and metabolic activity, and by another way in liquid culture. In addition, the results provided an evidence of the accumulation of Cd and Pb on the mycelia ofP. chrysosporium.展开更多
The phase equilibria in Co-rich region of Co-Ti-Ta system were studied.The microstructure and XRD analysis together with EDS determination show that L12 type Co3Ti phase and Laves_C36_Co3Ta phase get equilibrium with ...The phase equilibria in Co-rich region of Co-Ti-Ta system were studied.The microstructure and XRD analysis together with EDS determination show that L12 type Co3Ti phase and Laves_C36_Co3Ta phase get equilibrium with α-Co phase from 1 000 to 1 200 ℃.The Co3Ti phase possesses a solubility of Ta higher than 10%,and the addition of Ta stabilizes the Co3Ti phase.The isothermal sections of the Co-Ti-Ta system in the Co-rich region at 1 000,1 100 and 1 200 ℃ were constructed according to the result.展开更多
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri...A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.展开更多
In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,part...In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,partial molar property functions,derivative functions with respect to composition,general equation of relationship between partial and average molar properties of components,difference equation and constraining equation of different values between partial and average molar properties,as well as general Gibbs-Duhem formula were derived.It was proved that the partial molar properties calculated from various combinative functions of average molar properties of alloys are equal,but in general,the partial molar properties are not equal to the average molar properties of a given component.This means that the partial molar properties cannot represent the corresponding properties of the component.All the equations and functions established in this work were proved to be correct by calculating the results of partial and average atomic volumes of components as well as average atomic volumes of alloys in the Au-Ni system.展开更多
By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length a...By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.展开更多
Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is ...Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.展开更多
The solidification microstructures and hardness of Mg-2%Zn (mass fraction) based alloys with addition of 0.4%Ce, 0.4%Gd, 0.4%Y or 0.4%Nd (mass fraction) were investigated, and the effects of the rare earth elements on...The solidification microstructures and hardness of Mg-2%Zn (mass fraction) based alloys with addition of 0.4%Ce, 0.4%Gd, 0.4%Y or 0.4%Nd (mass fraction) were investigated, and the effects of the rare earth elements on the microstructures and mechanical properties of these alloys extruded at 310℃ were also compared. The results indicate that the trace rare earth Ce, Gd, Y or Nd in the Mg-2%Zn alloy has obviously different grain refinement effects on its solidification microstructures, and the as-cast and hot-extruded alloy with 0.4%Ce has the smallest average grain size and the highest strength. However, the extruded alloys containing 0.4%Nd or 0.4%Y with the elongation of 26.6% and 30%, respectively, show higher plasticity in spite of lower strength as compared with the alloy containing 0.4%Ce.展开更多
Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing exp...Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.展开更多
A novel continuum robot for colonoscopy is presented.The aim is to develop a robot for colonoscopywhich can provide the same functions as conventional colonoscope,but much less pain and discomfort forpatient.In contra...A novel continuum robot for colonoscopy is presented.The aim is to develop a robot for colonoscopywhich can provide the same functions as conventional colonoscope,but much less pain and discomfort forpatient.In contrast to traditional rigid-link robot,the robot features a continuous backbone with nojoints.The continuum robot is 300 mm in total length and 12 mm in diameter that is less than the averagediameter of human colon(20 mm).The robot has a total of 4 DOF(degrees of freedom)and is actuatedremotely by 6 hybrid step motors through super-elastic NiTi wires.Its shape can be changed with highdexterity,therefore ensuring its adaptability to the tortuous shape of human colon.The mechanical struc-ture,kinematics and DSP-based control system are discussed; prototype experiments are carried out tovalidate the kinematics model and to show the motion performances.展开更多
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that...Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.展开更多
A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this proc...A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.展开更多
AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys wer...AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys were studied by XRD,OM and microhardness testing techniques.The results show that when the addition level of Al5Ti1B master alloy is less than 0.5%(mass fraction),the average grain size of the alloys decreases with the increase of Al5Ti1B content at the same holding time.But the grain size increases somewhat with further addition of Al5Ti1B.The average grain size of the alloys decreases with the increase of the holding time as it is less than 30 min at the same addition level of Al5Ti1B.It is considered that TiB2 particles can serve as the heterogeneous nucleation sites ofα-Mg during solidification,and heterogeneous nucleation is the main reason for the grain refinement of AZ61 alloys.The microhardness of the refined AZ61 alloys with 1.0%Al5Ti1B addition is increased by about 8%.展开更多
Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex nu...Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex number infinitely times and to consider the normality relation to differential monomials f(z)f(k) (z).展开更多
文摘An Mg-Zn-Mn-Ca alloy with high Zn content was fabricated by vacuum melting. The as-cast microstructure was investigated using XRD, SEM and EDS. It was shown that the alloy was composed of α-Mg, strip-like Ca2Mg6Zn3 and a few Mn- containing phases. Most of the Ca2Mg6Zn3 phase was distributed at grain boundaries while Mn-containing particles were deposited within grains. The as-cast samples were immersed in a Hank's balanced salt solution (HBSS) up to 24 h. The corroded surface morphology and cross-section microstructure were analyzed after different time of immersion so as to understand the corrosion behavior of the alloy. During immersion in the HBSS, the alloy corroded homogeneously at the very beginning and then localized corrosion occurred. The secondary phases protruded on the surface due to the dissolution of α-Mg, suggesting micro- galvanic corrosion occurred with secondary phases acting as the cathode and ct-Mg as the anode. Micro-cracks were formed at the interfaces between Ca2Mg6Zn3 and α-Mg, indicating an undermining tendency of the secondary phases.
基金Supported by Technology Research and Development Plan of the Department of Science and Technology in Hebei Province(11220104D-4)
文摘‘Jinxiu' is a processing apricot(Armeniaca vulgaris L.) cultivar derived from the cross of ‘Chuanzhihong'בJintaiyang'.The fruit is oval-shaped with the ground color of orange and 1/4-1/2 sheet red in the surface. The average fruit weight is65.5 g, and the maximum value is 106 g. The flesh is orange, fine with very less fiber, toughness, less juice and freestone, and tastes sour and sweet. The soluble solid content is 12.5%. The edible rate is 95.8%. The fruit skin hardness is 12.9 kg/cm2 and storable. The preserved apricots have orange color and are tasty. The preserved yield is 40%. The fruit development period is 72 d. The fruit has high yield, and the fruit yield in full fruit period can reach 37 000 kg/hm2. ‘Jinxiu' was examined and approved by Hebei Examination and Approval Committee of Forest Tree Variety in 2013.
基金Project(2012CB722803) supported by the National Basic Research Program of ChinaProject(2011FA008) supported by the Key Projectof Science and Technology Program of Yunnan Province,China
文摘Based on the molecular interaction volume model (MIVM), the activities of components of Pb Sn Sb ternary alloy were predicted. The vapo^liquid phase equilibrium of Pb-Sn-Sb alloy system was calculated using the activity coefficients of Pb Sn-Sb alloy system in the process of vacuum distillation. The calculated results show that the content of Sn in vapor phase increases with the increasing distillation temperature and content of Sn in liquid phase. However, the content of Sn in vapor phase is only 0.45% (mass fraction) while 97% in liquid phase at 1100 ℃, which shows that the separating effect is very well. Experimental investigations on the separation of Pb-Sn-Sb ternary alloy were carried out in the distillation temperature range of 1100-1300 ℃ under vacuum condition. It is found that the Sn content in vapor phase is 0.54% while 97% in liquid phase at 1100 ℃. Finally, the predicted data were compared with the experimental results showing good agreement with each other.
基金Projects(21477027,51278176)supported by the National Natural Science Foundation of ChinaProject(2014A020216048)supported by the Science and Technology Planning Project of Guangdong Province,ChinaProject(2015M582363)supported by the China Postdoctoral Science Foundation
文摘The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture conditions. The diameter of colony, biomass ofP. chrysosporium, ligninolytic enzyme activities and bioaccumulation quantity of heavy metals were detected. The results indicated that Cd was more toxic than Pb to P. chrysosporium and the toxicity of Cd and Pb to P. chrysosporium was further strengthened under Cd+Pb combined pollution in different culture conditions. Heavy metals Cd and Pb had indirect influence on the production of ligninolytic enzymes by directly affecting the fungal growth and metabolic activity, and by another way in liquid culture. In addition, the results provided an evidence of the accumulation of Cd and Pb on the mycelia ofP. chrysosporium.
基金Project (50771027) supported by the National Natural Science Foundation of China
文摘The phase equilibria in Co-rich region of Co-Ti-Ta system were studied.The microstructure and XRD analysis together with EDS determination show that L12 type Co3Ti phase and Laves_C36_Co3Ta phase get equilibrium with α-Co phase from 1 000 to 1 200 ℃.The Co3Ti phase possesses a solubility of Ta higher than 10%,and the addition of Ta stabilizes the Co3Ti phase.The isothermal sections of the Co-Ti-Ta system in the Co-rich region at 1 000,1 100 and 1 200 ℃ were constructed according to the result.
基金Project(20130161110007) supported by the Doctoral Program of Higher Education of China
文摘A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.
基金Project (51071181) supported by the National Natural Science Foundation of ChinaProject (2010FJ4034) supported by Natural Science Foundation of Hunan Province,China
文摘In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,partial molar property functions,derivative functions with respect to composition,general equation of relationship between partial and average molar properties of components,difference equation and constraining equation of different values between partial and average molar properties,as well as general Gibbs-Duhem formula were derived.It was proved that the partial molar properties calculated from various combinative functions of average molar properties of alloys are equal,but in general,the partial molar properties are not equal to the average molar properties of a given component.This means that the partial molar properties cannot represent the corresponding properties of the component.All the equations and functions established in this work were proved to be correct by calculating the results of partial and average atomic volumes of components as well as average atomic volumes of alloys in the Au-Ni system.
文摘By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.
基金Projects(2007CB613701 2007CB613702) supported by the National Basic Research Program of China+2 种基金Project(NCET-08-0098) supported by the Program for New Century Excellent Talents in UniversityProject(50974037) supported by the National Natural Science Foundation of ChinaProject(90209002) supported by the Special Fund for Basic Scientific Research of Central Colleges in China
文摘The solidification microstructures and hardness of Mg-2%Zn (mass fraction) based alloys with addition of 0.4%Ce, 0.4%Gd, 0.4%Y or 0.4%Nd (mass fraction) were investigated, and the effects of the rare earth elements on the microstructures and mechanical properties of these alloys extruded at 310℃ were also compared. The results indicate that the trace rare earth Ce, Gd, Y or Nd in the Mg-2%Zn alloy has obviously different grain refinement effects on its solidification microstructures, and the as-cast and hot-extruded alloy with 0.4%Ce has the smallest average grain size and the highest strength. However, the extruded alloys containing 0.4%Nd or 0.4%Y with the elongation of 26.6% and 30%, respectively, show higher plasticity in spite of lower strength as compared with the alloy containing 0.4%Ce.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.
基金Supported by the High Technology Research Development Programme of China (No. 2007AA042105)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0423)
文摘A novel continuum robot for colonoscopy is presented.The aim is to develop a robot for colonoscopywhich can provide the same functions as conventional colonoscope,but much less pain and discomfort forpatient.In contrast to traditional rigid-link robot,the robot features a continuous backbone with nojoints.The continuum robot is 300 mm in total length and 12 mm in diameter that is less than the averagediameter of human colon(20 mm).The robot has a total of 4 DOF(degrees of freedom)and is actuatedremotely by 6 hybrid step motors through super-elastic NiTi wires.Its shape can be changed with highdexterity,therefore ensuring its adaptability to the tortuous shape of human colon.The mechanical struc-ture,kinematics and DSP-based control system are discussed; prototype experiments are carried out tovalidate the kinematics model and to show the motion performances.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
基金Projects(51274054,U1332115,51271042,51375070,51401044)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Grant Project of Ministry of Education of China+4 种基金Project(2013A16GX110)supported by the Science and Technology Planning Project of Dalian,ChinaProject(2014M551075)supported by the China Postdoctoral Science FoundationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.
基金Project(2010RFQXG117)supported by the Special Fund for Technological Innovation Program of Harbin,China
文摘AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys were studied by XRD,OM and microhardness testing techniques.The results show that when the addition level of Al5Ti1B master alloy is less than 0.5%(mass fraction),the average grain size of the alloys decreases with the increase of Al5Ti1B content at the same holding time.But the grain size increases somewhat with further addition of Al5Ti1B.The average grain size of the alloys decreases with the increase of the holding time as it is less than 30 min at the same addition level of Al5Ti1B.It is considered that TiB2 particles can serve as the heterogeneous nucleation sites ofα-Mg during solidification,and heterogeneous nucleation is the main reason for the grain refinement of AZ61 alloys.The microhardness of the refined AZ61 alloys with 1.0%Al5Ti1B addition is increased by about 8%.
基金Foundation item: Supported by the National Natural Science Foundation of Education Department of Sichuan Province(2002A031) Supported by the "11.5" Research and Study Programs of SWUST(06zx2116) Supported by the National Natural Science Foundation of China(10271122)
文摘Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex number infinitely times and to consider the normality relation to differential monomials f(z)f(k) (z).