An approach is presented for computing the adjoint operator vector of a class of nonlinear (that is, partial-nonlinear) operator matrices by using the properties of conjugate operators to generalize a previous metho...An approach is presented for computing the adjoint operator vector of a class of nonlinear (that is, partial-nonlinear) operator matrices by using the properties of conjugate operators to generalize a previous method proposed by the author. A unified theory is then given to solve a class of nonlinear (partial-nonlinear and including all linear) and non-homogeneous differential equations with a mathematical mechanization method. In other words, a transformation is constructed by homogenization and triangulation, which reduces the original system to a simpler diagonal system. Applications are given to solve some elasticity equations.展开更多
Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to ...Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to compute the number of arbitrary functions of positive differential order in the general solution. Then, under the "AC=BD" model for mathematics mechanization developed by Hong-qing ZHANG, we present a method to reduce an overdetermined system to a well-determined one. As applications, the Maxwell equations and weakly overdetermined equations are considered.展开更多
基金the National Basic Research Program of China(973Program)(No.2004CB318000)
文摘An approach is presented for computing the adjoint operator vector of a class of nonlinear (that is, partial-nonlinear) operator matrices by using the properties of conjugate operators to generalize a previous method proposed by the author. A unified theory is then given to solve a class of nonlinear (partial-nonlinear and including all linear) and non-homogeneous differential equations with a mathematical mechanization method. In other words, a transformation is constructed by homogenization and triangulation, which reduces the original system to a simpler diagonal system. Applications are given to solve some elasticity equations.
基金supported by the National Basic Research Program of China(Grant No. 2004CB318000)the "Math+X" Fund of Dalian University of Technology
文摘Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to compute the number of arbitrary functions of positive differential order in the general solution. Then, under the "AC=BD" model for mathematics mechanization developed by Hong-qing ZHANG, we present a method to reduce an overdetermined system to a well-determined one. As applications, the Maxwell equations and weakly overdetermined equations are considered.