在城市内涝场景当中,较多人与车辆被困于积水中,给大众生活带来不利影响。随着计算机技术的快速发展,深度学习在解决实际问题中的运用也越来越广泛。文中提出了一种利用TensorFlow深度学习框架搭建MaskR-CNN(Regions with Convolutional...在城市内涝场景当中,较多人与车辆被困于积水中,给大众生活带来不利影响。随着计算机技术的快速发展,深度学习在解决实际问题中的运用也越来越广泛。文中提出了一种利用TensorFlow深度学习框架搭建MaskR-CNN(Regions with Convolutional Neural Networks Features)模型的方法,对城市内涝场景的积水区进行检测,检测效果良好,mAP(mean Average Precision)值达到89%。同时,基于YOLOv5(You Only Look Once version 5)模型,采用密集帧间差运算对处于积水区中的人车进行追踪,追踪精度达到90%左右,并使用YOLOv5外挂ResNet(Residual Network)实现了对内涝场景中的车辆进行淹没危险度分析。实验结果表明,文中所用模型的车辆危险度检测效果优于其他模型。展开更多
文摘在城市内涝场景当中,较多人与车辆被困于积水中,给大众生活带来不利影响。随着计算机技术的快速发展,深度学习在解决实际问题中的运用也越来越广泛。文中提出了一种利用TensorFlow深度学习框架搭建MaskR-CNN(Regions with Convolutional Neural Networks Features)模型的方法,对城市内涝场景的积水区进行检测,检测效果良好,mAP(mean Average Precision)值达到89%。同时,基于YOLOv5(You Only Look Once version 5)模型,采用密集帧间差运算对处于积水区中的人车进行追踪,追踪精度达到90%左右,并使用YOLOv5外挂ResNet(Residual Network)实现了对内涝场景中的车辆进行淹没危险度分析。实验结果表明,文中所用模型的车辆危险度检测效果优于其他模型。