This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
Through reviewing the development history of tight oil and gas in China,summarizing theoretical understandings in exploration and development,and comparing the geological conditions and development technologies object...Through reviewing the development history of tight oil and gas in China,summarizing theoretical understandings in exploration and development,and comparing the geological conditions and development technologies objectively in China and the United States,we clarified the progress and stage of tight oil and gas exploration and development in China,and envisaged the future development orientation of theory and technology,process methods and development policy.In nearly a decade,relying on the exploration and development practice,science and technology research and management innovation,huge breakthroughs have been made.The laws of formation,distribution and accumulation of tight oil and gas have been researched,the development theories such as"multi-stage pressure drop"and"man-made reservoirs"have been established,and several technology series have been innovated and integrated.These technology series include enrichment regions selection,well pattern deployment,single well production and recovery factor enhancement,and low cost development.As a result,both of reserves and production of tight oil and gas increase rapidly.However,limited by the sedimentary environment and tectonic background,compared with North America,China’s tight oil and gas reservoirs are worse in continuity,more difficult to develop and poorer in economic efficiency.Moreover,there are still some gaps in reservoir identification accuracy and stimulating technology between China and North America.In the future,Chinese oil and gas companies should further improve the resource evaluation method,tackle key technologies such as high-precision 3D seismic interpretation,man-made reservoir,and intelligent engineering,innovate theories and technologies to enhance single well production and recovery rate,and actively endeavor to get the finance and tax subsidy on tight oil and gas.展开更多
As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new p...As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new progresses of main development technologies for medium-high permeability and high water cut, low permeability, heavy oil, complex faulted block and special lithology reservoirs in the past decade, especially those international achievements made in enhanced oil recovery, were summarized, the key problems and major challenges that different oilfields are facing were analyzed, and the development route and direction of three-generation technologies were proposed as "mature technology in industrialized application, key technology in pilot test and innovative technology for backup". The key research contents should focus on:(1) Fine water flooding and chemical flooding for mature oilfields, improving oil recovery after chemical flooding, and gas flooding for low permeability reservoirs must be researched and tested in field further.(2) Study on subversive technologies like nanometer smart flooding, in-situ upgrading and injection and production through the same well should be strengthened.(3) EOR technologies for low oil price, new fields(deep sea, deep layer, unconventional reservoirs etc.) and highly difficult conditions(the quaternary recovery after chemical flooding, tertiary recovery in ultra-low permeability reservoirs) should be stocked up in advance. The development cost must be lowered significantly through constant innovation in technology and reservoir management to realize sustainable development of oilfields.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
To achieve the goals of carbon peaking and carbon neutrality under the backgrounds of poor resource endowments, weak theoretical basis and other factors, the development of the coalbed methane industry of China faces ...To achieve the goals of carbon peaking and carbon neutrality under the backgrounds of poor resource endowments, weak theoretical basis and other factors, the development of the coalbed methane industry of China faces many bottlenecks and challenges. This paper systematically analyzes the coalbed methane resources, key technologies and progress, exploration effect and production performance in China and abroad. The main problems are summarized as low exploration degree, low technical adaptability, low return on investment and small development scale. This study suggests that the coalbed methane industry in China should follow the “two-step”(short-term and long-term) development strategy. The short-term action before 2030, can be divided into two stages:(1) From the present to 2025, to achieve new breakthroughs in theory and technology, and accomplish the target of annual production of 10 billion cubic meters;(2) From 2025 to 2030, to form the technologies suitable for most geological conditions, further expand the industry scale, and achieve an annual output of 30 billion cubic meters, improving the proportion of coalbed methane in the total natural gas production. The long-term action after 2030 is to gradually realize an annual production of 100 billion cubic meters. The strategic countermeasure to achieve the above goals is to adhere to “technology+management dual wheel drive”, realize the synchronous progress of technology and management, and promote the high-quality development of the coalbed methane industry. Technically, the efforts will focus on fine and effective development of coalbed methane in the medium to shallow layers of mature fields, effective development of coalbed methane in new fields, extensive and beneficial development of deep coalbed methane, three-dimensional comingled development of coalbed methane, applying new technologies such as coalbed methane displacement by carbon dioxide, microwave heating and stimulation technology, ultrasonic stimulation, high-temperature heat injection stimulation, rock breaking by high-energy laser. In terms of management, the efforts will focus on coordinative innovation of resource, technology, talent, policy and investment, with technological innovation as the core, to realize an all-round and integrated management and promote the development of coalbed methane industry at a high level.展开更多
China surpassed the United States (US) in 2006 to become the largest greenhouse gas emitter. CCS- EOR technology, which meets the dual needs of reducing carbon emissions and enhancing oil recovery, has had much impo...China surpassed the United States (US) in 2006 to become the largest greenhouse gas emitter. CCS- EOR technology, which meets the dual needs of reducing carbon emissions and enhancing oil recovery, has had much importance attached to it. For the latest decade, the Chinese government has provided support for CCS- EOR technology through policy, funding and research projects. Under the vigorous guidance of the government, oil companies represented by China National Petroleum Corporation (CNPC) competed to carry out research, demonstration, popularization and operation in major oil fields centering on the CCS-EOR technology and achieved remarkable results. Its scientific and technological achievements are reflected in various sub-projects under the 863 Program, 973 Program and National Science and Technology Major Project. However, while shifting from trial promotion of the current stage to large-scale commercialization, CCS-EOR technology will not only face many opportunities but also quite a few challenges.展开更多
The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories...The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the展开更多
Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three dif...Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three different types of impurities are generally available in the pharmaceutical’s product specification: organic impurities, inorganic impurities, and residual solvents. Residual solvents are organic volatile chemicals used or generated during the manufacturing of drug substances or drug products. Purpose: The aim of this study is to develop a cost-effective gas chromatographic method for the identification and quantification of some commonly used solvents—methanol, acetone, isopropyl alcohol (IPA), methylene chloride, ethyl acetate, tetrahydrofuran (THF), benzene, toluene, and pyridine—in pharmaceutical product manufacturing. This method will be able to identify and quantify the multiple solvents within a single gas chromatographic procedure. Method: A gas chromatography (GC) equipped with a headspace sampler and a flame ionization detector, and a column DB 624, 30-meter-long × 0.32-millimeter internal diameter, 1,8 μm-thick, Brand-Agilent was used to develop this method. The initial GC oven temperature was 40°C and held for 5 minutes. It was then increase to 80˚C at a rate of 2˚C per minute, followed by a further increase to 225˚C at a rate of 30˚C per minute, with a final hold at 225˚C for 10 minutes. Nitrogen was used as a carrier gas at a flow rate of 1.20 mL per minute. Dimethyl sulfoxide (DMSO) was selected as sample solvent. Results: The developed method is precise and specific. The percent RSD for the areas of six replicate injections of this gas chromatographic method was within 10.0 and the recovery result found within 80.0% to 120.0%.展开更多
The latest advancement of CO2 flooding and sequestration theory and technology in China is systematically described, and the future development direction is put forward. Based on the geological characteristics of cont...The latest advancement of CO2 flooding and sequestration theory and technology in China is systematically described, and the future development direction is put forward. Based on the geological characteristics of continental reservoirs, five theories and key technologies have been developed:(1) Enriched the understandings about the mass transfer characteristics of components between CO2 and crude oil in continental reservoirs, micro-flooding mechanism and sequestration mechanism of different geological bodies.(2) Established the design method of reservoir engineering parameters, injection-production control technology and development effect evaluation technology of CO2 flooding, etc.(3) Developed a series of production engineering technologies such as separated layer CO2 injection technology, high efficiency lifting technology, on-line wellbore corrosion monitoring and protection technology.(4) Innovated a series of surface engineering technology including CO2 capture technology, pipeline CO2 transportation, CO2 surface injection, and production gas circulation injection, etc.(5) Formed a series of supporting technologies including monitoring, and safety and environmental protection evaluation of CO2 flooding reservoir. On this basis, the technological development directions in the future have been put forward:(1) Breakthrough in low-cost CO2 capture technology to provide cheap CO2 gas source;(2) Improve the miscibility technology between CO2 and crude oil to enhance oil displacement efficiency;(3) Improve CO2 sweeping volume;(4) Develop more effective lifting tools and technologies;(5) Strengthen the research of basic theory and key technology of CO2 storage monitoring. CO2 flooding and sequestration in the Jilin Oilfield shows that this technology has broad application prospects in China.展开更多
In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reser...In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reserve. The viscous reserves were of high structural dip angle. In addition delta depositional system represented highly variable geomorphology, where stacked sandbodies and shale bedding are crossing each other frequently. In order to keep a higher production rate, using horizontal wells along with water injection was not enough;therefore, detailed reservoir characterization, well pattern pilot experiment and GeoSteering were used to optimize previous development strategy and keep horizontal trajectories safely landing into reservoir target zone. The stratigraphic sequence architecture that is derived from seismic interpretations captured the variation within these high dip structural backgrounds very effectively. The best combination of choices was “Injecting Water outside from OWC” and “Stair Shaped Horizontal Trajectories”. The borehole collision risks of these optimized strategies were then analyzed and controlled successfully by the GeoSteering tools during trajectory landing process. The reservoir development performance is improved tremendously as result of these renewed development strategies.展开更多
The contemporary environment within which command,control,communications,computers and intelligence (C4I platforms exist, have a number of characteristics. These characteristics may be most obviously identified as int...The contemporary environment within which command,control,communications,computers and intelligence (C4I platforms exist, have a number of characteristics. These characteristics may be most obviously identified as interconnectivity, international networking, speed of data transfer, the compact nature of electronic information and rapidly changing technology. Information security professionals employ a variety of approaches in order to counter risks within this complex and fluid environment. The gamut of potential security activities ranges form access control through a variety of auditing techniques to secure data communications. This field is broad and well documented. Indeed, the discipline of network risk management and data security is both well developed and sophisticated.This paper addresses twin themes:i.The fundamental issue of the method by which specific approaches are employed. This is a precursor to the adoption of an eventual strategy.ii.The crucial issues revolving around the展开更多
The field test of high concentration polymer flooding has the characteristics of high cost, long cycle and irreversibility of the reservoir development process. In order to ensure the best development effect of the de...The field test of high concentration polymer flooding has the characteristics of high cost, long cycle and irreversibility of the reservoir development process. In order to ensure the best development effect of the development block, this paper simulated and calculated the high concentration polymer flooding development case of the polymer flooding pilot test area through numerical simulation research, and selected the best case through the comparison of various development indicators. The simulation results showed that the larger the polymer dosage and the higher the concentration, the better the oil displacement effect. The best injection method in the construction process was the overall injection of high concentration polymer. The test area should implement high concentration polymer oil displacement as soon as possible. The research results provided theoretical guidance for the future development and management of the pilot area.展开更多
In Vitro production of swine embryos is a valuable tool to generate clones and genetically modified pigs during a short period of time. However, the efficiency of the existing methods is extremely low and the oocyte q...In Vitro production of swine embryos is a valuable tool to generate clones and genetically modified pigs during a short period of time. However, the efficiency of the existing methods is extremely low and the oocyte quality and quantity represent important obstacles on the success of in Vitro production of embryos. Therefore, the aim of this study was to compare the in Vitro maturation, fertilization and subsequent embryo development rates of oocytes recovered by ovary slicing or follicular aspiration. The oocyte recovery rate (grade 1 COC/ovary) was higher (p = 0.0083) in the slicing group when compared to the aspiration group. No differences were observed between groups regarding in Vitro maturation and early cleavage rates. A higher percentage of oocytes recovered by follicular aspiration reached the blastocyst stage after IVF when compared to the ovary slicing method (p = 0.0395). However, no difference on blastocyst cell number was observed. Although the recovery of oocytes using the slicing technique yielded more grade 1 oocytes per ovary than the aspiration method, the number of oocytes that reached the blastocyst stage after IVF by the slicing method was lower when compared with oocytes obtained by aspiration, as observed by lower blastocyst rates. In conclusion, the follicular aspiration is the method of choice for porcine in Vitro embryo production.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
基金Supported by the China National Science and Technology Major Project(2016ZX05015,2016ZX05047,2017ZX05001).
文摘Through reviewing the development history of tight oil and gas in China,summarizing theoretical understandings in exploration and development,and comparing the geological conditions and development technologies objectively in China and the United States,we clarified the progress and stage of tight oil and gas exploration and development in China,and envisaged the future development orientation of theory and technology,process methods and development policy.In nearly a decade,relying on the exploration and development practice,science and technology research and management innovation,huge breakthroughs have been made.The laws of formation,distribution and accumulation of tight oil and gas have been researched,the development theories such as"multi-stage pressure drop"and"man-made reservoirs"have been established,and several technology series have been innovated and integrated.These technology series include enrichment regions selection,well pattern deployment,single well production and recovery factor enhancement,and low cost development.As a result,both of reserves and production of tight oil and gas increase rapidly.However,limited by the sedimentary environment and tectonic background,compared with North America,China’s tight oil and gas reservoirs are worse in continuity,more difficult to develop and poorer in economic efficiency.Moreover,there are still some gaps in reservoir identification accuracy and stimulating technology between China and North America.In the future,Chinese oil and gas companies should further improve the resource evaluation method,tackle key technologies such as high-precision 3D seismic interpretation,man-made reservoir,and intelligent engineering,innovate theories and technologies to enhance single well production and recovery rate,and actively endeavor to get the finance and tax subsidy on tight oil and gas.
文摘As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new progresses of main development technologies for medium-high permeability and high water cut, low permeability, heavy oil, complex faulted block and special lithology reservoirs in the past decade, especially those international achievements made in enhanced oil recovery, were summarized, the key problems and major challenges that different oilfields are facing were analyzed, and the development route and direction of three-generation technologies were proposed as "mature technology in industrialized application, key technology in pilot test and innovative technology for backup". The key research contents should focus on:(1) Fine water flooding and chemical flooding for mature oilfields, improving oil recovery after chemical flooding, and gas flooding for low permeability reservoirs must be researched and tested in field further.(2) Study on subversive technologies like nanometer smart flooding, in-situ upgrading and injection and production through the same well should be strengthened.(3) EOR technologies for low oil price, new fields(deep sea, deep layer, unconventional reservoirs etc.) and highly difficult conditions(the quaternary recovery after chemical flooding, tertiary recovery in ultra-low permeability reservoirs) should be stocked up in advance. The development cost must be lowered significantly through constant innovation in technology and reservoir management to realize sustainable development of oilfields.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金Supported by the China National Science and Technology Major Project (2016ZX05042)。
文摘To achieve the goals of carbon peaking and carbon neutrality under the backgrounds of poor resource endowments, weak theoretical basis and other factors, the development of the coalbed methane industry of China faces many bottlenecks and challenges. This paper systematically analyzes the coalbed methane resources, key technologies and progress, exploration effect and production performance in China and abroad. The main problems are summarized as low exploration degree, low technical adaptability, low return on investment and small development scale. This study suggests that the coalbed methane industry in China should follow the “two-step”(short-term and long-term) development strategy. The short-term action before 2030, can be divided into two stages:(1) From the present to 2025, to achieve new breakthroughs in theory and technology, and accomplish the target of annual production of 10 billion cubic meters;(2) From 2025 to 2030, to form the technologies suitable for most geological conditions, further expand the industry scale, and achieve an annual output of 30 billion cubic meters, improving the proportion of coalbed methane in the total natural gas production. The long-term action after 2030 is to gradually realize an annual production of 100 billion cubic meters. The strategic countermeasure to achieve the above goals is to adhere to “technology+management dual wheel drive”, realize the synchronous progress of technology and management, and promote the high-quality development of the coalbed methane industry. Technically, the efforts will focus on fine and effective development of coalbed methane in the medium to shallow layers of mature fields, effective development of coalbed methane in new fields, extensive and beneficial development of deep coalbed methane, three-dimensional comingled development of coalbed methane, applying new technologies such as coalbed methane displacement by carbon dioxide, microwave heating and stimulation technology, ultrasonic stimulation, high-temperature heat injection stimulation, rock breaking by high-energy laser. In terms of management, the efforts will focus on coordinative innovation of resource, technology, talent, policy and investment, with technological innovation as the core, to realize an all-round and integrated management and promote the development of coalbed methane industry at a high level.
文摘China surpassed the United States (US) in 2006 to become the largest greenhouse gas emitter. CCS- EOR technology, which meets the dual needs of reducing carbon emissions and enhancing oil recovery, has had much importance attached to it. For the latest decade, the Chinese government has provided support for CCS- EOR technology through policy, funding and research projects. Under the vigorous guidance of the government, oil companies represented by China National Petroleum Corporation (CNPC) competed to carry out research, demonstration, popularization and operation in major oil fields centering on the CCS-EOR technology and achieved remarkable results. Its scientific and technological achievements are reflected in various sub-projects under the 863 Program, 973 Program and National Science and Technology Major Project. However, while shifting from trial promotion of the current stage to large-scale commercialization, CCS-EOR technology will not only face many opportunities but also quite a few challenges.
文摘The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the
文摘Background: Impurities are not expected in the final pharmaceutical products. All impurities should be regulated in both drug substances and drug products in accordance with pharmacopeias and ICH guidelines. Three different types of impurities are generally available in the pharmaceutical’s product specification: organic impurities, inorganic impurities, and residual solvents. Residual solvents are organic volatile chemicals used or generated during the manufacturing of drug substances or drug products. Purpose: The aim of this study is to develop a cost-effective gas chromatographic method for the identification and quantification of some commonly used solvents—methanol, acetone, isopropyl alcohol (IPA), methylene chloride, ethyl acetate, tetrahydrofuran (THF), benzene, toluene, and pyridine—in pharmaceutical product manufacturing. This method will be able to identify and quantify the multiple solvents within a single gas chromatographic procedure. Method: A gas chromatography (GC) equipped with a headspace sampler and a flame ionization detector, and a column DB 624, 30-meter-long × 0.32-millimeter internal diameter, 1,8 μm-thick, Brand-Agilent was used to develop this method. The initial GC oven temperature was 40°C and held for 5 minutes. It was then increase to 80˚C at a rate of 2˚C per minute, followed by a further increase to 225˚C at a rate of 30˚C per minute, with a final hold at 225˚C for 10 minutes. Nitrogen was used as a carrier gas at a flow rate of 1.20 mL per minute. Dimethyl sulfoxide (DMSO) was selected as sample solvent. Results: The developed method is precise and specific. The percent RSD for the areas of six replicate injections of this gas chromatographic method was within 10.0 and the recovery result found within 80.0% to 120.0%.
基金Supported by the China National Science and Technology Major Project(2016ZX05016)
文摘The latest advancement of CO2 flooding and sequestration theory and technology in China is systematically described, and the future development direction is put forward. Based on the geological characteristics of continental reservoirs, five theories and key technologies have been developed:(1) Enriched the understandings about the mass transfer characteristics of components between CO2 and crude oil in continental reservoirs, micro-flooding mechanism and sequestration mechanism of different geological bodies.(2) Established the design method of reservoir engineering parameters, injection-production control technology and development effect evaluation technology of CO2 flooding, etc.(3) Developed a series of production engineering technologies such as separated layer CO2 injection technology, high efficiency lifting technology, on-line wellbore corrosion monitoring and protection technology.(4) Innovated a series of surface engineering technology including CO2 capture technology, pipeline CO2 transportation, CO2 surface injection, and production gas circulation injection, etc.(5) Formed a series of supporting technologies including monitoring, and safety and environmental protection evaluation of CO2 flooding reservoir. On this basis, the technological development directions in the future have been put forward:(1) Breakthrough in low-cost CO2 capture technology to provide cheap CO2 gas source;(2) Improve the miscibility technology between CO2 and crude oil to enhance oil displacement efficiency;(3) Improve CO2 sweeping volume;(4) Develop more effective lifting tools and technologies;(5) Strengthen the research of basic theory and key technology of CO2 storage monitoring. CO2 flooding and sequestration in the Jilin Oilfield shows that this technology has broad application prospects in China.
文摘In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reserve. The viscous reserves were of high structural dip angle. In addition delta depositional system represented highly variable geomorphology, where stacked sandbodies and shale bedding are crossing each other frequently. In order to keep a higher production rate, using horizontal wells along with water injection was not enough;therefore, detailed reservoir characterization, well pattern pilot experiment and GeoSteering were used to optimize previous development strategy and keep horizontal trajectories safely landing into reservoir target zone. The stratigraphic sequence architecture that is derived from seismic interpretations captured the variation within these high dip structural backgrounds very effectively. The best combination of choices was “Injecting Water outside from OWC” and “Stair Shaped Horizontal Trajectories”. The borehole collision risks of these optimized strategies were then analyzed and controlled successfully by the GeoSteering tools during trajectory landing process. The reservoir development performance is improved tremendously as result of these renewed development strategies.
文摘The contemporary environment within which command,control,communications,computers and intelligence (C4I platforms exist, have a number of characteristics. These characteristics may be most obviously identified as interconnectivity, international networking, speed of data transfer, the compact nature of electronic information and rapidly changing technology. Information security professionals employ a variety of approaches in order to counter risks within this complex and fluid environment. The gamut of potential security activities ranges form access control through a variety of auditing techniques to secure data communications. This field is broad and well documented. Indeed, the discipline of network risk management and data security is both well developed and sophisticated.This paper addresses twin themes:i.The fundamental issue of the method by which specific approaches are employed. This is a precursor to the adoption of an eventual strategy.ii.The crucial issues revolving around the
文摘The field test of high concentration polymer flooding has the characteristics of high cost, long cycle and irreversibility of the reservoir development process. In order to ensure the best development effect of the development block, this paper simulated and calculated the high concentration polymer flooding development case of the polymer flooding pilot test area through numerical simulation research, and selected the best case through the comparison of various development indicators. The simulation results showed that the larger the polymer dosage and the higher the concentration, the better the oil displacement effect. The best injection method in the construction process was the overall injection of high concentration polymer. The test area should implement high concentration polymer oil displacement as soon as possible. The research results provided theoretical guidance for the future development and management of the pilot area.
基金supported financially by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo(FAPESP).
文摘In Vitro production of swine embryos is a valuable tool to generate clones and genetically modified pigs during a short period of time. However, the efficiency of the existing methods is extremely low and the oocyte quality and quantity represent important obstacles on the success of in Vitro production of embryos. Therefore, the aim of this study was to compare the in Vitro maturation, fertilization and subsequent embryo development rates of oocytes recovered by ovary slicing or follicular aspiration. The oocyte recovery rate (grade 1 COC/ovary) was higher (p = 0.0083) in the slicing group when compared to the aspiration group. No differences were observed between groups regarding in Vitro maturation and early cleavage rates. A higher percentage of oocytes recovered by follicular aspiration reached the blastocyst stage after IVF when compared to the ovary slicing method (p = 0.0395). However, no difference on blastocyst cell number was observed. Although the recovery of oocytes using the slicing technique yielded more grade 1 oocytes per ovary than the aspiration method, the number of oocytes that reached the blastocyst stage after IVF by the slicing method was lower when compared with oocytes obtained by aspiration, as observed by lower blastocyst rates. In conclusion, the follicular aspiration is the method of choice for porcine in Vitro embryo production.