While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance. In t...While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance. In this paper, we propose a methodology to objectively evaluate video segmentation algorithm with ground-truth, which is based on computing the deviation of segmentation results from the reference segmentation. Four different metrics based on classification pixels, edges, relative foreground area and relative position respectively are combined to address the spatial accuracy. Temporal coherency is evaluated by utilizing the difference of spatial accuracy between successive frames. The experimental results show the feasibility of our approach. Moreover, it is computationally more efficient than previous methods. It can be applied to provide an offline ranking among different segmentation algorithms and to optimally set the parameters for a given algorithm.展开更多
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back...Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems.展开更多
In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysi...In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysis of several common moving object detection methods, a moving object detection and recognition algorithm combined frame difference with background subtraction is presented in this paper. In the algorithm, we first calculate the average of the values of the gray of the continuous multi-frame image in the dynamic image, and then get background image obtained by the statistical average of the continuous image sequence, that is, the continuous interception of the N-frame images are summed, and find the average. In this case, weight of object information has been increasing, and also restrains the static background. Eventually the motion detection image contains both the target contour and more target information of the target contour point from the background image, so as to achieve separating the moving target from the image. The simulation results show the effectiveness of the proposed algorithm.展开更多
An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame dif...An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame difference and adjusted background subtraction. An adaptive threshold technique is employed to automatically choose the threshold value to segment the moving objects from the still background. And experiment results show that the algorithm is effective and efficient in practical situations. Furthermore, the algorithm is robust to the effects of the changing of lighting condition and can be applied for video surveillance system.展开更多
MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial obj...MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial object segmentation and object tracking. In this paper, an initial object segmentation method for video object plane(VOP) generation using color information is proposed. Based on 3 by 3 linear templates, a cellular neural network (CNN) is used to implemented object segmentation. The Experimental results are presented to verify the efficiency and robustness of this approach.展开更多
This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and ...This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and track specific objects in videos. The proposed algorithm is constituted by two stages. The first stage seeks to determine the direction of the object’s motion by analyzing the changing regions around the object being tracked between two consecutive frames. Once the direction of the object’s motion has been predicted, it is initialized an iterative process that seeks to minimize a function of dissimilarity in order to find the location of the object being tracked in the next frame. The main advantage of the proposed algorithm is that, unlike existing kernel-based methods, it is immune to highly cluttered conditions. The results obtained by the proposed algorithm show that the tracking process was successfully carried out for a set of color videos with different challenging conditions such as occlusion, illumination changes, cluttered conditions, and object scale changes.展开更多
Video surveillance system is the most important issue in homeland security field. It is used as a security system because of its ability to track and to detect a particular person. To overcome the lack of the conventi...Video surveillance system is the most important issue in homeland security field. It is used as a security system because of its ability to track and to detect a particular person. To overcome the lack of the conventional video surveillance system that is based on human perception, we introduce a novel cognitive video surveillance system (CVS) that is based on mobile agents. CVS offers important attributes such as suspect objects detection and smart camera cooperation for people tracking. According to many studies, an agent-based approach is appropriate for distributed systems, since mobile agents can transfer copies of themselves to other servers in the system.展开更多
A novel temporal shape error concealment technique is proposed, which can he used in the context of object-based video coding schemes. In order to reduce the effect of the shape variations of a video object, the curva...A novel temporal shape error concealment technique is proposed, which can he used in the context of object-based video coding schemes. In order to reduce the effect of the shape variations of a video object, the curvature scale space (CSS) technique is adopted to extract features, and then these features are used for boundary matching between the current frame and the previous frame. Because the temporal, spatial and sta- tistical video contour information are all considered, the proposed method can find the optimal matching, which is used to replace the damaged contours. The simulation results show that the proposed algorithm achieves better subjective, objective qualities and higher efficiency than those previously developed methods.展开更多
The increasing use of digital video everyday in a multitude of electronic devices, including mobile phones, tablets and laptops, poses the need for quick development of cross-platform video software. However current a...The increasing use of digital video everyday in a multitude of electronic devices, including mobile phones, tablets and laptops, poses the need for quick development of cross-platform video software. However current approaches to this direction usually require a long learning curve, and their development lacks standardization. This results in software components that are difficult to reuse, and hard to maintain or extend. In order to overcome such issues, we propose a novel object-oriented framework for efficient development of software systems for video analysis. It consists of a set of four abstract components, suitable for the implementation of independent plug-in modules for video acquisition, preprocessing, analysis and output handling. The extensibility of each module can be facilitated by sub-modules specifying additional functionalities. This architecture enables quick responses to changes and re-configurability;thus conforming to the requirements of agile software development practices. Considering the need for platform independency, the proposed Java Video Analysis (JVA) framework is implemented in Java. It is publicly available through the web as open-access software, supported by a growing collection of implemented modules. Its efficiency is empirically validated for the development of a representative video analysis system.展开更多
The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the ar...The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods.展开更多
This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveill...This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveillance videos on demand through video streaming over mobile communication networks. The intelligent video analysis includes moving object detection/tracking and key frame selection which can browse useful video clips. The communication networking services, comprising video transcoding, multimedia messaging, and mobile video streaming, transmit surveillance information into mobile appliances. Moving object detection is achieved by background subtraction and particle filter tracking. Key frame selection, which aims to deliver an alarm to a mobile client using multimedia messaging service accompanied with an extracted clear frame, is reached by devising a weighted importance criterion considering object clarity and face appearance. Besides, a spatial- domain cascaded transcoder is developed to convert the filtered image sequence of detected objects into the mobile video streaming format. Experimental results show that the system can successfully detect all events of moving objects for a complex surveillance scene, choose very appropriate key frames for users, and transcode the images with a high power signal-to-noise ratio (PSNR).展开更多
The main purpose of the model is to present how the Unified Modeling Language (UML) can be used for modeling digital video database system (VDBS). It demonstrates the modeling process that can be followed during the a...The main purpose of the model is to present how the Unified Modeling Language (UML) can be used for modeling digital video database system (VDBS). It demonstrates the modeling process that can be followed during the analysis phase of complex applications. In order to guarantee the continuity mapping of the models, the authors propose some suggestions to transform the use case diagrams into an object diagram, which is one of the main diagrams for the next development phases.展开更多
The region completeness of object detection is very crucial to video surveillance, such as the pedestrian and vehicle identifications. However, many conventional object detection approaches cannot guarantee the object...The region completeness of object detection is very crucial to video surveillance, such as the pedestrian and vehicle identifications. However, many conventional object detection approaches cannot guarantee the object region completeness because the object detection can be influenced by the illumination variations and clustering backgrounds. In order to overcome this problem, we propose the iterative superpixels grouping (ISPG) method to extract the precise object boundary and generate the object region with high completeness after the object detection. First, by extending the superpixel segmentation method, the proposed ISPG method can improve the inaccurate segmentation problem and guarantee the region completeness on the object regions. Second, the multi- resolution superpixel-based region completeness enhancement method is proposed to extract the object region with high precision and completeness. The simulation results show that the proposed method outperforms the conventional object detection methods in terms of object completeness evaluation.展开更多
In order to detect the object in video efficiently, an automatic and real time video segmentation algorithm based on background model and color clustering is proposed. This algorithm consists of four phases: backgroun...In order to detect the object in video efficiently, an automatic and real time video segmentation algorithm based on background model and color clustering is proposed. This algorithm consists of four phases: background restoration, moving objects extract, moving objects region clustering and post processing. The threshold of the background restoration is not given in advanced. It can be gotten automatically. And a new object region cluster algorithm based on background model and color clustering to remove significance noise is proposed. An efficient method of eliminating shadow is also used. This approach was compared with other methods on pixel error ratio. The experiment result indicates the algorithm is correct and efficient.展开更多
文摘While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance. In this paper, we propose a methodology to objectively evaluate video segmentation algorithm with ground-truth, which is based on computing the deviation of segmentation results from the reference segmentation. Four different metrics based on classification pixels, edges, relative foreground area and relative position respectively are combined to address the spatial accuracy. Temporal coherency is evaluated by utilizing the difference of spatial accuracy between successive frames. The experimental results show the feasibility of our approach. Moreover, it is computationally more efficient than previous methods. It can be applied to provide an offline ranking among different segmentation algorithms and to optimally set the parameters for a given algorithm.
基金This project was supported by the foundation of the Visual and Auditory Information Processing Laboratory of BeijingUniversity of China (0306) and the National Science Foundation of China (60374031).
文摘Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems.
文摘In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysis of several common moving object detection methods, a moving object detection and recognition algorithm combined frame difference with background subtraction is presented in this paper. In the algorithm, we first calculate the average of the values of the gray of the continuous multi-frame image in the dynamic image, and then get background image obtained by the statistical average of the continuous image sequence, that is, the continuous interception of the N-frame images are summed, and find the average. In this case, weight of object information has been increasing, and also restrains the static background. Eventually the motion detection image contains both the target contour and more target information of the target contour point from the background image, so as to achieve separating the moving target from the image. The simulation results show the effectiveness of the proposed algorithm.
文摘An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame difference and adjusted background subtraction. An adaptive threshold technique is employed to automatically choose the threshold value to segment the moving objects from the still background. And experiment results show that the algorithm is effective and efficient in practical situations. Furthermore, the algorithm is robust to the effects of the changing of lighting condition and can be applied for video surveillance system.
文摘MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial object segmentation and object tracking. In this paper, an initial object segmentation method for video object plane(VOP) generation using color information is proposed. Based on 3 by 3 linear templates, a cellular neural network (CNN) is used to implemented object segmentation. The Experimental results are presented to verify the efficiency and robustness of this approach.
文摘This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and track specific objects in videos. The proposed algorithm is constituted by two stages. The first stage seeks to determine the direction of the object’s motion by analyzing the changing regions around the object being tracked between two consecutive frames. Once the direction of the object’s motion has been predicted, it is initialized an iterative process that seeks to minimize a function of dissimilarity in order to find the location of the object being tracked in the next frame. The main advantage of the proposed algorithm is that, unlike existing kernel-based methods, it is immune to highly cluttered conditions. The results obtained by the proposed algorithm show that the tracking process was successfully carried out for a set of color videos with different challenging conditions such as occlusion, illumination changes, cluttered conditions, and object scale changes.
文摘Video surveillance system is the most important issue in homeland security field. It is used as a security system because of its ability to track and to detect a particular person. To overcome the lack of the conventional video surveillance system that is based on human perception, we introduce a novel cognitive video surveillance system (CVS) that is based on mobile agents. CVS offers important attributes such as suspect objects detection and smart camera cooperation for people tracking. According to many studies, an agent-based approach is appropriate for distributed systems, since mobile agents can transfer copies of themselves to other servers in the system.
基金the National Natural Science Foundation of China (60532070)
文摘A novel temporal shape error concealment technique is proposed, which can he used in the context of object-based video coding schemes. In order to reduce the effect of the shape variations of a video object, the curvature scale space (CSS) technique is adopted to extract features, and then these features are used for boundary matching between the current frame and the previous frame. Because the temporal, spatial and sta- tistical video contour information are all considered, the proposed method can find the optimal matching, which is used to replace the damaged contours. The simulation results show that the proposed algorithm achieves better subjective, objective qualities and higher efficiency than those previously developed methods.
文摘The increasing use of digital video everyday in a multitude of electronic devices, including mobile phones, tablets and laptops, poses the need for quick development of cross-platform video software. However current approaches to this direction usually require a long learning curve, and their development lacks standardization. This results in software components that are difficult to reuse, and hard to maintain or extend. In order to overcome such issues, we propose a novel object-oriented framework for efficient development of software systems for video analysis. It consists of a set of four abstract components, suitable for the implementation of independent plug-in modules for video acquisition, preprocessing, analysis and output handling. The extensibility of each module can be facilitated by sub-modules specifying additional functionalities. This architecture enables quick responses to changes and re-configurability;thus conforming to the requirements of agile software development practices. Considering the need for platform independency, the proposed Java Video Analysis (JVA) framework is implemented in Java. It is publicly available through the web as open-access software, supported by a growing collection of implemented modules. Its efficiency is empirically validated for the development of a representative video analysis system.
基金National Natural Science Foundation of China(No.61573095)Natural Science Foundation of Shanghai,China(No.6ZR1446700)
文摘The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods.
文摘This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveillance videos on demand through video streaming over mobile communication networks. The intelligent video analysis includes moving object detection/tracking and key frame selection which can browse useful video clips. The communication networking services, comprising video transcoding, multimedia messaging, and mobile video streaming, transmit surveillance information into mobile appliances. Moving object detection is achieved by background subtraction and particle filter tracking. Key frame selection, which aims to deliver an alarm to a mobile client using multimedia messaging service accompanied with an extracted clear frame, is reached by devising a weighted importance criterion considering object clarity and face appearance. Besides, a spatial- domain cascaded transcoder is developed to convert the filtered image sequence of detected objects into the mobile video streaming format. Experimental results show that the system can successfully detect all events of moving objects for a complex surveillance scene, choose very appropriate key frames for users, and transcode the images with a high power signal-to-noise ratio (PSNR).
基金Supported by the Scientific Item of National Power Company(SPKJ0 16 -0 71)
文摘The main purpose of the model is to present how the Unified Modeling Language (UML) can be used for modeling digital video database system (VDBS). It demonstrates the modeling process that can be followed during the analysis phase of complex applications. In order to guarantee the continuity mapping of the models, the authors propose some suggestions to transform the use case diagrams into an object diagram, which is one of the main diagrams for the next development phases.
基金supported in part by the“MOST”under Grant No.103-2221-E-216-012
文摘The region completeness of object detection is very crucial to video surveillance, such as the pedestrian and vehicle identifications. However, many conventional object detection approaches cannot guarantee the object region completeness because the object detection can be influenced by the illumination variations and clustering backgrounds. In order to overcome this problem, we propose the iterative superpixels grouping (ISPG) method to extract the precise object boundary and generate the object region with high completeness after the object detection. First, by extending the superpixel segmentation method, the proposed ISPG method can improve the inaccurate segmentation problem and guarantee the region completeness on the object regions. Second, the multi- resolution superpixel-based region completeness enhancement method is proposed to extract the object region with high precision and completeness. The simulation results show that the proposed method outperforms the conventional object detection methods in terms of object completeness evaluation.
基金the Ministerial Level Advanced Research Foundation(10405033)
文摘In order to detect the object in video efficiently, an automatic and real time video segmentation algorithm based on background model and color clustering is proposed. This algorithm consists of four phases: background restoration, moving objects extract, moving objects region clustering and post processing. The threshold of the background restoration is not given in advanced. It can be gotten automatically. And a new object region cluster algorithm based on background model and color clustering to remove significance noise is proposed. An efficient method of eliminating shadow is also used. This approach was compared with other methods on pixel error ratio. The experiment result indicates the algorithm is correct and efficient.