The main types of defect in the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys with the 'one-step' directional solidification process were investigated. The effect of the dendrite, grain boundaries, twin boundaries, and R...The main types of defect in the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys with the 'one-step' directional solidification process were investigated. The effect of the dendrite, grain boundaries, twin boundaries, and REFe_3 precipitates on the magnetostrictive response of the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys was analyzed respectively. The experiment results demonstrate that the dendrite, twin boundaries, and REFe_3 precipitates can be avoided by modifying alloying ingredient, solidification parameters and annealing technique. The dendritic growth front often leads to dendrite sheet, rare earth-rich phase, and twin boundaries. The lower proportion of rare earth, or slow solidification rate, results in the occurrence of REFe_3 precipitatates. It is vital for diminishing the defects to control the undercooling of solid-liquid interface at (2.4~5.1)×10~4 K·s·cm^(-2) so that the crystal grows in cellular growth front.展开更多
文摘The main types of defect in the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys with the 'one-step' directional solidification process were investigated. The effect of the dendrite, grain boundaries, twin boundaries, and REFe_3 precipitates on the magnetostrictive response of the (Tb_(0.3)Dy_(0.7))Fe_(1.95) alloys was analyzed respectively. The experiment results demonstrate that the dendrite, twin boundaries, and REFe_3 precipitates can be avoided by modifying alloying ingredient, solidification parameters and annealing technique. The dendritic growth front often leads to dendrite sheet, rare earth-rich phase, and twin boundaries. The lower proportion of rare earth, or slow solidification rate, results in the occurrence of REFe_3 precipitatates. It is vital for diminishing the defects to control the undercooling of solid-liquid interface at (2.4~5.1)×10~4 K·s·cm^(-2) so that the crystal grows in cellular growth front.