This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrabl...This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.展开更多
We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and the...We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11574153)the Foundation of the Ministry of Industry and Information Technology of China(Grant No.TSXK2022D007)。
文摘This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.
文摘We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.