Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)...Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
Bollobas and Gyarfas conjectured that for n 〉 4(k - 1) every 2-edge-coloring of Kn contains a monochromatic k-connected subgraph with at least n - 2k + 2 vertices. Liu, et al. proved that the conjecture holds when...Bollobas and Gyarfas conjectured that for n 〉 4(k - 1) every 2-edge-coloring of Kn contains a monochromatic k-connected subgraph with at least n - 2k + 2 vertices. Liu, et al. proved that the conjecture holds when n 〉 13k - 15. In this note, we characterize all the 2-edge-colorings of Kn where each monochromatic k-connected subgraph has at most n - 2k + 2 vertices for n ≥ 13k - 15.展开更多
Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem ce...Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.展开更多
基金supported by the National Natural Science Foundation of China,No.8227050826(to PL)Tianjin Science and Technology Bureau Foundation,No.20201194(to PL)Tianjin Graduate Research and Innovation Project,No.2022BKY174(to CW).
文摘Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金Supported by the National Natural Science Foundation of China(10701065 and 11101378)Zhejiang Provincial Natural Science Foundation(LY14A010009)
文摘Bollobas and Gyarfas conjectured that for n 〉 4(k - 1) every 2-edge-coloring of Kn contains a monochromatic k-connected subgraph with at least n - 2k + 2 vertices. Liu, et al. proved that the conjecture holds when n 〉 13k - 15. In this note, we characterize all the 2-edge-colorings of Kn where each monochromatic k-connected subgraph has at most n - 2k + 2 vertices for n ≥ 13k - 15.
基金supported by the National Nature Science Foundation of China,No.81471308(to JL)the Innovative Leading Talents of Liaoning Province,No.XLYC1902031(to JL)+2 种基金Science and Technology Projects in Liaoning Province,No.2022-BS-238(to CH)Young Top Talents of Liaoning Province,No.XLYC1907009(to LW)Dalian Science and Technology Innovation Fund,No.2018J11CY025(to JL)。
文摘Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.