To avoid mesh distortion and iterative remeshing in mesh-based numerical analysis,a meshless approach based on element free Galerkin (EFG) method is applied to the metal forming analysis of ring compression. Discrete ...To avoid mesh distortion and iterative remeshing in mesh-based numerical analysis,a meshless approach based on element free Galerkin (EFG) method is applied to the metal forming analysis of ring compression. Discrete equations are formulated upon the moving least-squares (MLS) approximation and modified Markov variational principles for rigid-plastic/ rigid-viscoplastic (RP/RVP) material models. The penalty function is used for the incompressible condition without volumetric locking. Based on the axisymmetric mechanical model,ring tests with different friction coefficients are studied. The deformed nodal configurations and shaded contours of equivalent strains are shown by developed meshless post processor. The comparison of meshless and finite element (FE) results validates the feasibility and accuracy for meshless method to simulate metal forming process.展开更多
文摘To avoid mesh distortion and iterative remeshing in mesh-based numerical analysis,a meshless approach based on element free Galerkin (EFG) method is applied to the metal forming analysis of ring compression. Discrete equations are formulated upon the moving least-squares (MLS) approximation and modified Markov variational principles for rigid-plastic/ rigid-viscoplastic (RP/RVP) material models. The penalty function is used for the incompressible condition without volumetric locking. Based on the axisymmetric mechanical model,ring tests with different friction coefficients are studied. The deformed nodal configurations and shaded contours of equivalent strains are shown by developed meshless post processor. The comparison of meshless and finite element (FE) results validates the feasibility and accuracy for meshless method to simulate metal forming process.