On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial ...On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial order,give the explicit formulations of the monotonicity solution sets A{1;≥,T_1;≤B^(1)}and B{1;≥,T_2≥A^(1)}for the(1)-inverse,and two results of the monotonicity charac teriaztion for the(1,2)-inverse.展开更多
Finding solutions of matrix equations in given set SR n×n is an active research field. Lots of investigation have done for these cases, where S are the sets of general or symmetric matrices and symmetric posit...Finding solutions of matrix equations in given set SR n×n is an active research field. Lots of investigation have done for these cases, where S are the sets of general or symmetric matrices and symmetric positive definite or sysmmetric semiposite definite matrices respectively . Recently, however, attentions are been paying to the situation for S to be the set of general(semi) positive definite matrices(called as semipositive subdefinite matrices below) . In this paper the necessary and sufficient conditions for the following two kinds of matrix equations having semipositive, subdefinite solutions are obtained. General solutions and symmetric solutions of the equations (Ⅰ) and (Ⅱ) have been considered in in detail.展开更多
The simultaneous diagonalization by congruence of pairs of Hermitian quaternion matrices is discussed. The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each q...The simultaneous diagonalization by congruence of pairs of Hermitian quaternion matrices is discussed. The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quaternion matrix. It is proved that any two semi-positive definite Hermitian quaternion matrices can be simultaneously diagonalized by congruence.展开更多
Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and su...Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
A normal orthodox semigroup is an orthodox semigroup whose idempotent elements form a normal band. We deal with congruences on a normal orthodox semigroup with an inverse transversal. A structure theorem for such semi...A normal orthodox semigroup is an orthodox semigroup whose idempotent elements form a normal band. We deal with congruences on a normal orthodox semigroup with an inverse transversal. A structure theorem for such semigroup is obtained. Munn(1966) gave a fundamental inverse semigroup. Following Munn's idea, we give a fundamental normal orthodox semigroup with an inverse transversal.展开更多
We study the entropy of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approxi-...We study the entropy of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approxi- mations. Applying the properties of exact differentials for three variables to the first law thermodynamics we derive the quantum corrections to the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.展开更多
Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-cor...Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-corrector algorithm that was proposed by Salahi, et a1.(2006) for linear optimization. Basedon the NT direction as Newton search direction, it is shown that the iteration-complexity bound of thealgorithm for semidefinite optimization is which is similar to that of the correspondingalgorithm for linear optimization.展开更多
We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to sev...We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.展开更多
This paper extends the class of generalized type I functions introduced by Aghezzaf and Hachimi(2000) to the context of higher-order case and formulate a number of higher-order duals to a non-differentiable multi-ob...This paper extends the class of generalized type I functions introduced by Aghezzaf and Hachimi(2000) to the context of higher-order case and formulate a number of higher-order duals to a non-differentiable multi-objective programming problem and establishes higher-order duality results under the higher-order generalized type I functions introduced in the present paper, A special case that appears repeatedly in the literature is that the support function is the square root of a positive semi-definite quadratic form. This and other special cases can be readily generated from these results.展开更多
文摘On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial order,give the explicit formulations of the monotonicity solution sets A{1;≥,T_1;≤B^(1)}and B{1;≥,T_2≥A^(1)}for the(1)-inverse,and two results of the monotonicity charac teriaztion for the(1,2)-inverse.
文摘Finding solutions of matrix equations in given set SR n×n is an active research field. Lots of investigation have done for these cases, where S are the sets of general or symmetric matrices and symmetric positive definite or sysmmetric semiposite definite matrices respectively . Recently, however, attentions are been paying to the situation for S to be the set of general(semi) positive definite matrices(called as semipositive subdefinite matrices below) . In this paper the necessary and sufficient conditions for the following two kinds of matrix equations having semipositive, subdefinite solutions are obtained. General solutions and symmetric solutions of the equations (Ⅰ) and (Ⅱ) have been considered in in detail.
文摘The simultaneous diagonalization by congruence of pairs of Hermitian quaternion matrices is discussed. The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quaternion matrix. It is proved that any two semi-positive definite Hermitian quaternion matrices can be simultaneously diagonalized by congruence.
文摘Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
文摘A normal orthodox semigroup is an orthodox semigroup whose idempotent elements form a normal band. We deal with congruences on a normal orthodox semigroup with an inverse transversal. A structure theorem for such semigroup is obtained. Munn(1966) gave a fundamental inverse semigroup. Following Munn's idea, we give a fundamental normal orthodox semigroup with an inverse transversal.
基金Supported by the Universidad Nacional de Colombia.Project Code 2010100
文摘We study the entropy of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approxi- mations. Applying the properties of exact differentials for three variables to the first law thermodynamics we derive the quantum corrections to the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.
基金supported by Natural Science Foundation of Hubei Province under Grant No.2008CDZ047
文摘Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-corrector algorithm that was proposed by Salahi, et a1.(2006) for linear optimization. Basedon the NT direction as Newton search direction, it is shown that the iteration-complexity bound of thealgorithm for semidefinite optimization is which is similar to that of the correspondingalgorithm for linear optimization.
基金supported by National Natural Science Foundation of China(Grant No.11301022)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University(Grant Nos.RCS2014ZT20 and RCS2014ZZ001)+1 种基金Beijing Natural Science Foundation(Grant No.9144031)the Hong Kong Research Grant Council(Grant Nos.Poly U 501909,502510,502111 and 501212)
文摘We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.
文摘This paper extends the class of generalized type I functions introduced by Aghezzaf and Hachimi(2000) to the context of higher-order case and formulate a number of higher-order duals to a non-differentiable multi-objective programming problem and establishes higher-order duality results under the higher-order generalized type I functions introduced in the present paper, A special case that appears repeatedly in the literature is that the support function is the square root of a positive semi-definite quadratic form. This and other special cases can be readily generated from these results.