Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The met...Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The metatungstate ion,[H2W(12)O(40)]^6-,is assembled on thiourea-modified graphene oxide(GO) by an impregnation method.The WC NPs,with a mean diameter of 1.5 nm,are obtained through a process whereby ammonium metatungstate first turns to WS2,which then forms an intercalation compound with RGO before growing,in situ,to WC NPs.The Pt/WC-RGO electrocatalysts are fabricated by a microwave-assisted method.The intimate contacts between Pt,WC,and RGO are confirmed by X-ray diffraction,scanning electron microscope,transmission electron microscope,and Raman spectroscopy.For methanol oxidation,the Pt/WC-RGO electrocatalyst exhibited an electrochemical surface area value of 246.1 m^2/g Pt and a peak current density of1364.7 mA/mg Pt,which are,respectively,3.66 and 4.77 times greater than those of commercial Pt/C electrocatalyst(67.2 m^2/g Pt,286.0 mA/mg Pt).The excellent CO-poisoning resistance and long-term stability of the electrocatalyst are also evidenced by CO stripping,chronoamperometry,and accelerated durability testing.Because Pt/WC-RGO has higher catalytic activity compared with that of commercial Pt/C,as a result of its intercalated structure and synergistic effect,less Pt will be required for the same performance,which in turn will reduce the cost of the fuel cell.The present method is facile,efficient,and scalable for mass production of the nanomaterials.展开更多
Increasing interest has been paid to the development of earth‐abundant metal complexes as promising surrogates of platinum for the electrocatalytically and photocatalytically driven hydrogen evolution reaction.In thi...Increasing interest has been paid to the development of earth‐abundant metal complexes as promising surrogates of platinum for the electrocatalytically and photocatalytically driven hydrogen evolution reaction.In this work,we report on molecular H2‐evolving catalysts based on two octahedral complexes of cobalt thiosemicarbazide,fac‐[Co(Htsc)3]Cl3·3H2O(C1,Htsc=thiosemicarbazide)and mer‐[Co(Htsc)3]Cl3·4H2O(C2),which have facial(fac)and meridional(mer)geometry,respectively.Electrochemical studies confirmed that both C1and C2are active electrocatalysts in MeOH solution using acetic acid as the proton source,with the same overpotential of^640mV and TOF of^210s–1.The complex C1also exhibits electrocatalytic activity for hydrogen evolution reaction in aqueous media free of organic solvent with a moderate overpotential(560mV).Visible light‐driven hydrogen evolution experiments were carried out in combination with fluorescein as photosensitizer and triethylamine as sacrificial reductant in homogeneous environments.Our studies showed that both C1and C2can be used as efficient proton‐reduction catalysts in purely aqueous solution and have the same photocatalytic activities.A TOF of125h–1with a TON of900for photocatalytic H2generation using C1and C2in water were achieved for the noble‐metal‐free homogeneous system.It should be noted that this is the first reported study investigating the effect on the catalytic hydrogen production performance of using fac‐and mer‐isomers of molecular catalysts.展开更多
Starting from 1-((1R,2R)-2-aminocyclohexyl)-3-substituted thioureas (3a–c) and substituted isothiocyanates (9a–d),chiral bis-thiourea derivatives containing α-aminophosphonate moiety 10a–l were prepared and comple...Starting from 1-((1R,2R)-2-aminocyclohexyl)-3-substituted thioureas (3a–c) and substituted isothiocyanates (9a–d),chiral bis-thiourea derivatives containing α-aminophosphonate moiety 10a–l were prepared and completely characterized by elemental analysis,physical and spectral (IR,1H NMR,13C NMR,31P NMR) data.The results of bioassay revealed that compounds 10a and 10e possessed appreciable curative bioactivities on cucumber mosaic virus (CMV) at 0.5 mg/mL in vivo (inhibitory rate = 60.3%,64.8% respectively) and tobacco mosaic virus (TMV) at 0.5 mg/mL in vivo (inhibitory rate = 50.3%,50.8% respectively),which were comparable to the values shown by standard reference (58.7%) and commercial product Ningnanmycin (56.3%),respectively.Chiral compound 10e displayed more potent antiviral activity (EC50 = 0.149 mg/mL) than Ningnanmycin (EC50 = 0.201mg/mL) against CMV.展开更多
Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of recept...Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of receptor 1 shows that a solvent molecule was captured by the host molecule through intermolecular hydrogen bonding. Moreover, it was self-assembled as a supramolecular system for the presence of abundant inter- and intramolecular hydrogen bonding and π-π interactions between phenyl groups. Their application as anion receptors has been examined by UV-Vis and ^1H NMR spectroscopy, showing that they had a higher selectivity for fluoride than other halides. The host and guest formed a 1 : 1 stoichiometry complex through hydrogen bonding interactions in the first step, then following a process of deprotonation in presence of an excess of F^- in the solvent of DMF.展开更多
基金supported by the International Science & Technology Cooperation Program of China(2010DFB63680)the National Natural Science Foundation of China(21376220)Zhejiang Provincial Natural Science Foundation of China(LY16B060009,LY12B03008)~~
文摘Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The metatungstate ion,[H2W(12)O(40)]^6-,is assembled on thiourea-modified graphene oxide(GO) by an impregnation method.The WC NPs,with a mean diameter of 1.5 nm,are obtained through a process whereby ammonium metatungstate first turns to WS2,which then forms an intercalation compound with RGO before growing,in situ,to WC NPs.The Pt/WC-RGO electrocatalysts are fabricated by a microwave-assisted method.The intimate contacts between Pt,WC,and RGO are confirmed by X-ray diffraction,scanning electron microscope,transmission electron microscope,and Raman spectroscopy.For methanol oxidation,the Pt/WC-RGO electrocatalyst exhibited an electrochemical surface area value of 246.1 m^2/g Pt and a peak current density of1364.7 mA/mg Pt,which are,respectively,3.66 and 4.77 times greater than those of commercial Pt/C electrocatalyst(67.2 m^2/g Pt,286.0 mA/mg Pt).The excellent CO-poisoning resistance and long-term stability of the electrocatalyst are also evidenced by CO stripping,chronoamperometry,and accelerated durability testing.Because Pt/WC-RGO has higher catalytic activity compared with that of commercial Pt/C,as a result of its intercalated structure and synergistic effect,less Pt will be required for the same performance,which in turn will reduce the cost of the fuel cell.The present method is facile,efficient,and scalable for mass production of the nanomaterials.
基金supported by the National Natural Science Foundation of China (21641011, 21773313)the Natural Science Foundation of Fujian Province (2015J01053, 2016J01060)+1 种基金Program for New Century Excellent Talents in Fujian Province UniversityPromotion Program for Young and Middle-aged Teacher in Science, Technology Research of Huaqiao University (ZQN-PY104)~~
文摘Increasing interest has been paid to the development of earth‐abundant metal complexes as promising surrogates of platinum for the electrocatalytically and photocatalytically driven hydrogen evolution reaction.In this work,we report on molecular H2‐evolving catalysts based on two octahedral complexes of cobalt thiosemicarbazide,fac‐[Co(Htsc)3]Cl3·3H2O(C1,Htsc=thiosemicarbazide)and mer‐[Co(Htsc)3]Cl3·4H2O(C2),which have facial(fac)and meridional(mer)geometry,respectively.Electrochemical studies confirmed that both C1and C2are active electrocatalysts in MeOH solution using acetic acid as the proton source,with the same overpotential of^640mV and TOF of^210s–1.The complex C1also exhibits electrocatalytic activity for hydrogen evolution reaction in aqueous media free of organic solvent with a moderate overpotential(560mV).Visible light‐driven hydrogen evolution experiments were carried out in combination with fluorescein as photosensitizer and triethylamine as sacrificial reductant in homogeneous environments.Our studies showed that both C1and C2can be used as efficient proton‐reduction catalysts in purely aqueous solution and have the same photocatalytic activities.A TOF of125h–1with a TON of900for photocatalytic H2generation using C1and C2in water were achieved for the noble‐metal‐free homogeneous system.It should be noted that this is the first reported study investigating the effect on the catalytic hydrogen production performance of using fac‐and mer‐isomers of molecular catalysts.
基金the National Key Project for Basic Research (2010CB 126105)the National Natural Science Foundation of China (20872021) for the financial support
文摘Starting from 1-((1R,2R)-2-aminocyclohexyl)-3-substituted thioureas (3a–c) and substituted isothiocyanates (9a–d),chiral bis-thiourea derivatives containing α-aminophosphonate moiety 10a–l were prepared and completely characterized by elemental analysis,physical and spectral (IR,1H NMR,13C NMR,31P NMR) data.The results of bioassay revealed that compounds 10a and 10e possessed appreciable curative bioactivities on cucumber mosaic virus (CMV) at 0.5 mg/mL in vivo (inhibitory rate = 60.3%,64.8% respectively) and tobacco mosaic virus (TMV) at 0.5 mg/mL in vivo (inhibitory rate = 50.3%,50.8% respectively),which were comparable to the values shown by standard reference (58.7%) and commercial product Ningnanmycin (56.3%),respectively.Chiral compound 10e displayed more potent antiviral activity (EC50 = 0.149 mg/mL) than Ningnanmycin (EC50 = 0.201mg/mL) against CMV.
基金Project supported by the National Natural Science Foundation of China (No. 20671077), the Key Scientific and Technical Research Project of Ministry of Education of China (No. 205161), the Youth Foundation of Gansu Province (No. 3YS051-A25-010), the Natural Science Foundation of Gansu Province in China (No. 3ZS061-A25-027) and the Scientific Research Fund of Education Department of Gansu Province (No. 0601-24).
文摘Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of receptor 1 shows that a solvent molecule was captured by the host molecule through intermolecular hydrogen bonding. Moreover, it was self-assembled as a supramolecular system for the presence of abundant inter- and intramolecular hydrogen bonding and π-π interactions between phenyl groups. Their application as anion receptors has been examined by UV-Vis and ^1H NMR spectroscopy, showing that they had a higher selectivity for fluoride than other halides. The host and guest formed a 1 : 1 stoichiometry complex through hydrogen bonding interactions in the first step, then following a process of deprotonation in presence of an excess of F^- in the solvent of DMF.