In 1992, Brualdi and Jung first introduced the maximum jump number M(n, k), that is, the maximum number of the jumps of all (0, 1)-matrices of order n with k 1's in each row and column, and then gave a table about...In 1992, Brualdi and Jung first introduced the maximum jump number M(n, k), that is, the maximum number of the jumps of all (0, 1)-matrices of order n with k 1's in each row and column, and then gave a table about the values of M(n, k) when 1 ≤ k ≤ n ≤ 10. They also put forward several conjectures, including the conjecture M(2k - 2, k) = 3k - 4 + [k-2/2]. In this paper, we prove that b(A) ≥ 4 for every A ∈ A(2k - 2, k) if k ≥ 11, and find another counter-example to this conjecture .展开更多
基金Hainan Natural Science Foundation of Hainan (10002)
文摘In 1992, Brualdi and Jung first introduced the maximum jump number M(n, k), that is, the maximum number of the jumps of all (0, 1)-matrices of order n with k 1's in each row and column, and then gave a table about the values of M(n, k) when 1 ≤ k ≤ n ≤ 10. They also put forward several conjectures, including the conjecture M(2k - 2, k) = 3k - 4 + [k-2/2]. In this paper, we prove that b(A) ≥ 4 for every A ∈ A(2k - 2, k) if k ≥ 11, and find another counter-example to this conjecture .