For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a cl...Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).展开更多
Three (2 + 1)-dimensional equations—Burgers equation, cylindrical Burgers equation and spherical Burgers equation, have been reduced to the classical Burgers equation by different transformation of variables respecti...Three (2 + 1)-dimensional equations—Burgers equation, cylindrical Burgers equation and spherical Burgers equation, have been reduced to the classical Burgers equation by different transformation of variables respectively. The decay mode solutions of the Burgers equation have been obtained by using the extended -expansion method, substituting the solutions obtained into the corresponding transformation of variables, the decay mode solutions of the three (2 + 1)-dimensional equations have been obtained successfully.展开更多
In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method...In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.展开更多
With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions ...With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.展开更多
The(3+1)-dimensional Burgers equation, which describes nonlinear waves in turbulence and the interface dynamics,is considered. Two types of semi-rational solutions, namely, the lump–kink solution and the lump–two ki...The(3+1)-dimensional Burgers equation, which describes nonlinear waves in turbulence and the interface dynamics,is considered. Two types of semi-rational solutions, namely, the lump–kink solution and the lump–two kinks solution, are constructed from the quadratic function ansatz. Some interesting features of interactions between lumps and other solitons are revealed analytically and shown graphically, such as fusion and fission processes.展开更多
Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic so...Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.展开更多
In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are...In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.展开更多
In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the...In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.展开更多
By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit c...By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.展开更多
We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide soli...We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.展开更多
A (2 + 1) dimensional KdV-mKdV equation is proposed and integrability in the sense of Painlevé and some exact solutions are discussed. The B?cklund transformation and bilinear equations are obtained through Painl...A (2 + 1) dimensional KdV-mKdV equation is proposed and integrability in the sense of Painlevé and some exact solutions are discussed. The B?cklund transformation and bilinear equations are obtained through Painlevé analysis. Some exact solutions are deduced by Hirota method and generalized Wronskian method.展开更多
N-soliton solutions and the bilinear form of the (2 + 1)-dimensional AKNS equation are obtained by using the Hirota method. Moreover, the double Wronskian solution and generalized double Wronskian solution are constru...N-soliton solutions and the bilinear form of the (2 + 1)-dimensional AKNS equation are obtained by using the Hirota method. Moreover, the double Wronskian solution and generalized double Wronskian solution are constructed through the Wronskian technique. Furthermore, rational solutions, Matveev solutions and complexitons of the (2 + 1)-dimensional AKNS equation are given through a matrix method for constructing double Wronskian entries. The three solutions are new.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.展开更多
In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the co...In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions.展开更多
In this article, we study the (2+1)-extension of Burgers equation and the KPequation. At first, based on a known Baecklund transformation and corresponding Lax pair, aninvariance which depends on two arbitrary functio...In this article, we study the (2+1)-extension of Burgers equation and the KPequation. At first, based on a known Baecklund transformation and corresponding Lax pair, aninvariance which depends on two arbitrary functions for (2+1)-extension of Burgers equation isworked out. Given a known solution and using the invariance, we can find solutions of the(2+1)-extension of Burgers equation repeatedly. Secondly, we put forward an invariance of Burgersequation which cannot be directly obtained by constraining the invariance of the (2+1)-extension ofBurgers equation. Furthermore, we reveal that the invariance for finding the solutions of Burgersequation can help us find the solutions of KP equation. At last, based on the invariance of Burgersequation, the corresponding recursion formulae for finding solutions of KP equation are digged out.As the application of our theory, some examples have been put forward in this article and somesolutions of the (2+1)-extension of Burgers equation, Burgers equation and KP equation are obtained.展开更多
The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, re...The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, respectively. It is shown that these solutions can be expressed as not only Pfaffians but also Wronskians and Grammians.展开更多
In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step proce...In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.展开更多
This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensiona...This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation can be written as a trilinear equation, through the trilinear-linear equation, we can obtain the explicit representation of exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation. We have depicted the profiles of the exact solutions by presenting their three-dimensional plots and the corresponding density plots.展开更多
In this paper, based on Hirota bilinear form, we aim to show the diversity of interaction solutions to the (2 + 1)-dimensional Sawada-Kotera (SK) equation. By introducing an arbitrary differentiable function in assump...In this paper, based on Hirota bilinear form, we aim to show the diversity of interaction solutions to the (2 + 1)-dimensional Sawada-Kotera (SK) equation. By introducing an arbitrary differentiable function in assumption form, we can obtain abundant interaction solutions which can provide the possibility for exploring the interactions between lump waves and other kinds of waves. By choosing some particular functions and values of the involved parameters, we give four illustrative examples of the resulting solutions, and explore some novel interaction behaviors in (2 + 1)-dimensional SK equation.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647112)the Foundation of Donghua University
文摘Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).
文摘Three (2 + 1)-dimensional equations—Burgers equation, cylindrical Burgers equation and spherical Burgers equation, have been reduced to the classical Burgers equation by different transformation of variables respectively. The decay mode solutions of the Burgers equation have been obtained by using the extended -expansion method, substituting the solutions obtained into the corresponding transformation of variables, the decay mode solutions of the three (2 + 1)-dimensional equations have been obtained successfully.
基金Partially supported by the National Key Basic Research Project of China under the Grant(2004CB318000).
文摘In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Undergraduate Scientific and Technological Innovation Project of Zhejiang Province of China (Grant No. 2012R412018)the Undergraduate Innovative Base Program of Zhejiang A & F University
文摘With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11501323,11701323,and 11605102)。
文摘The(3+1)-dimensional Burgers equation, which describes nonlinear waves in turbulence and the interface dynamics,is considered. Two types of semi-rational solutions, namely, the lump–kink solution and the lump–two kinks solution, are constructed from the quadratic function ansatz. Some interesting features of interactions between lumps and other solitons are revealed analytically and shown graphically, such as fusion and fission processes.
文摘Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.
基金Project supported by the Anhui Key Laboratory of Information Materials and Devices (Anhui University),China
文摘In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.
基金Project supported by the Global Change Research Program of China(Grant No.2015CB953904)the National Natural Science Foundation of China(Grant Nos.11275072 and 11435005)+2 种基金the Doctoral Program of Higher Education of China(Grant No.20120076110024)the Network Information Physics Calculation of Basic Research Innovation Research Group of China(Grant No.61321064)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things(Grant No.ZF1213)
文摘In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.
文摘By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446)
文摘We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.
基金supported by Chinese National Social Science Foundation(Grant Number:CNSSF:13CJY037)Research on the indemnificatory Apartment Construction Based on Residential Integration.
文摘A (2 + 1) dimensional KdV-mKdV equation is proposed and integrability in the sense of Painlevé and some exact solutions are discussed. The B?cklund transformation and bilinear equations are obtained through Painlevé analysis. Some exact solutions are deduced by Hirota method and generalized Wronskian method.
文摘N-soliton solutions and the bilinear form of the (2 + 1)-dimensional AKNS equation are obtained by using the Hirota method. Moreover, the double Wronskian solution and generalized double Wronskian solution are constructed through the Wronskian technique. Furthermore, rational solutions, Matveev solutions and complexitons of the (2 + 1)-dimensional AKNS equation are given through a matrix method for constructing double Wronskian entries. The three solutions are new.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.
文摘In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions.
文摘In this article, we study the (2+1)-extension of Burgers equation and the KPequation. At first, based on a known Baecklund transformation and corresponding Lax pair, aninvariance which depends on two arbitrary functions for (2+1)-extension of Burgers equation isworked out. Given a known solution and using the invariance, we can find solutions of the(2+1)-extension of Burgers equation repeatedly. Secondly, we put forward an invariance of Burgersequation which cannot be directly obtained by constraining the invariance of the (2+1)-extension ofBurgers equation. Furthermore, we reveal that the invariance for finding the solutions of Burgersequation can help us find the solutions of KP equation. At last, based on the invariance of Burgersequation, the corresponding recursion formulae for finding solutions of KP equation are digged out.As the application of our theory, some examples have been put forward in this article and somesolutions of the (2+1)-extension of Burgers equation, Burgers equation and KP equation are obtained.
基金supported by the National Natural Science Foundation of China(11202161 and 11172233)the Basic Research Fund of the Northwestern Polytechnical University(GBKY1034)
文摘The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, respectively. It is shown that these solutions can be expressed as not only Pfaffians but also Wronskians and Grammians.
基金Project supported by the National Natural Science Foundation of China(Grant No.11505094)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20150984)
文摘In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.
文摘This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation can be written as a trilinear equation, through the trilinear-linear equation, we can obtain the explicit representation of exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation. We have depicted the profiles of the exact solutions by presenting their three-dimensional plots and the corresponding density plots.
文摘In this paper, based on Hirota bilinear form, we aim to show the diversity of interaction solutions to the (2 + 1)-dimensional Sawada-Kotera (SK) equation. By introducing an arbitrary differentiable function in assumption form, we can obtain abundant interaction solutions which can provide the possibility for exploring the interactions between lump waves and other kinds of waves. By choosing some particular functions and values of the involved parameters, we give four illustrative examples of the resulting solutions, and explore some novel interaction behaviors in (2 + 1)-dimensional SK equation.