期刊文献+
共找到382篇文章
< 1 2 20 >
每页显示 20 50 100
一类(2+1)-维非线性波方程的精确解
1
作者 熊宇璐 崔静易 黄在堂 《南宁师范大学学报(自然科学版)》 2024年第2期19-29,共11页
该文通过不同的方法得到了(2+1)-维非线性波方程的不同类型的精确解。首先运用同宿测试法,得到了方程的呼吸解和孤立波解。运用三波法,得到了单、双呼吸解,然后通过参数极限法,将这两种解退化得到lump解。其次,在N-孤子解的基础上,分别... 该文通过不同的方法得到了(2+1)-维非线性波方程的不同类型的精确解。首先运用同宿测试法,得到了方程的呼吸解和孤立波解。运用三波法,得到了单、双呼吸解,然后通过参数极限法,将这两种解退化得到lump解。其次,在N-孤子解的基础上,分别添加不同的约束条件,得到了Q-呼吸解和Y-型孤子解。最后,在Y-型孤子解的基础上增加了约束条件,得到了呼吸解与Y-型孤子解组成的相互作用解。 展开更多
关键词 (2+1)-非线性方程 lump解 Q-呼吸解 Y-型孤子解 相互作用解
下载PDF
(3+1)维广义非线性发展方程的双线性Backlund变换与精确解
2
作者 薛宇英 套格图桑 《内蒙古师范大学学报(自然科学版)》 CAS 2024年第2期173-182,共10页
基于Hirota双线性方法和试探函数法,研究一个(3+1)维广义非线性发展方程的双线性Backlund变换和精确解问题。用Hirota双线性法,构造(3+1)维广义非线性发展方程的双线性形式和双线性Backlund变换。基于双线性形式和双线性Backlund变换,... 基于Hirota双线性方法和试探函数法,研究一个(3+1)维广义非线性发展方程的双线性Backlund变换和精确解问题。用Hirota双线性法,构造(3+1)维广义非线性发展方程的双线性形式和双线性Backlund变换。基于双线性形式和双线性Backlund变换,利用试探函数法与符号计算系统Mathematica,获得(3+1)维广义非线性发展方程的多种精确解,包括呼吸波解、复合型解、Lump周期解和孤子解,并分析解的相互作用情况。 展开更多
关键词 (3+1)广义非线性发展方程 HIROTA双线性方法 BACKLUND变换 试探函数法 精确解
下载PDF
二维非线性四阶分数阶波动方程的BDF2-WSGI有限元算法
3
作者 刘心愿 《应用数学进展》 2024年第4期1217-1225,共9页
本文主要研究了二维非线性四阶分数阶波动方程的有效数值算法。通过结合二阶BDF2-WSGI时间离散格式与有限元方法对二维非线性四阶分数阶方程进行求解。首先,引入辅助变量,将分数阶四阶波动问题转化为低阶耦合方程,然后利用Riemann-Liouv... 本文主要研究了二维非线性四阶分数阶波动方程的有效数值算法。通过结合二阶BDF2-WSGI时间离散格式与有限元方法对二维非线性四阶分数阶方程进行求解。首先,引入辅助变量,将分数阶四阶波动问题转化为低阶耦合方程,然后利用Riemann-Liouville分数阶积分对所得方程进行积分,最后使用WSGI逼近公式逼近分数阶积分,形成二阶BDF2有限元格式。本文给出了详细的数值算法,并通过一个二维算例进行了数值试验,验证了算法的有效性和收敛性。 展开更多
关键词 非线性四阶分数阶波动方程 有限元方法 BDF2格式 WSGI公式
下载PDF
(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程的新精确解的构建
4
作者 黄春 《理论数学》 2024年第10期74-80,共7页
非线性Ablowitz-Kaup-Newell-Segur方程是一类应用广泛的非线性偏微分方程。(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程常用于描述孤立波在光纤中传播的物理过程,本文利用复行波变换和扩展的Tanh-函数展开法,获得了(2 + 1)维... 非线性Ablowitz-Kaup-Newell-Segur方程是一类应用广泛的非线性偏微分方程。(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程常用于描述孤立波在光纤中传播的物理过程,本文利用复行波变换和扩展的Tanh-函数展开法,获得了(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程的系列新的精确行波解。The Ablowitz-Kaup-Newell-Segur (AKNS) equations, a class of nonlinear partial differential equations, find their utility in a wide array of applications. The space-time fractional (2 + 1)-dimensional AKNS equation, in particular, is capable of describing the physical process of solitary wave propagation in optical fibers. A new class of exact traveling wave solutions of (2 + 1)-dimensional generalized fractional AKNS equation are obtained by employing complex traveling wave transformation and extended Tanh expansion method. 展开更多
关键词 (2 + 1)分数阶Ablowitz-Kaup-Newell-Segur方程 Riemann-Liouville分数阶导数 精确行波解 Tanh-函数展开法
下载PDF
tan(φ(ξ)/2)-展开法和(2+1)维非线性立方Klein-Gordon方程
5
作者 项芳婷 赵小山 《江西科学》 2023年第3期436-439,共4页
运用tan(φ(ξ)/2)-展开法并借助符合计算系统Maple,求出了(2+1)维非线性立方Klein-Gordon方程的多种精确解,这些解包括周期解、孤子解、指数函数解。
关键词 tan(φ(ξ)/2)-展开法 (2+1)非线性立方Klein-Gordon方程 符号计算
下载PDF
时间分数阶(2+1)-维扩展Fisher-Kolmogorov方程的精确解
6
作者 王美乐 胡彦霞 《内蒙古大学学报(自然科学版)》 CAS 2024年第3期232-243,共12页
利用Lie方法对一类时间分数阶(2+1)-维扩展Fisher-Kolmogorov方程进行对称分析,并求得该方程的不变解,借助不变解对方程进行降维处理。对引入分数阶复变换得到的常微分方程运用辅助函数法,从而得到这类时间分数阶方程在参数满足各种不... 利用Lie方法对一类时间分数阶(2+1)-维扩展Fisher-Kolmogorov方程进行对称分析,并求得该方程的不变解,借助不变解对方程进行降维处理。对引入分数阶复变换得到的常微分方程运用辅助函数法,从而得到这类时间分数阶方程在参数满足各种不同情况下的精确解,包括三角函数解和孤波解等。最后绘出两类典型精确解的行波图。 展开更多
关键词 (2+1)-扩展Fisher-Kolmogorov方程 Lie方法 辅助函数法 精确解
下载PDF
(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统中的明暗光孤子解
7
作者 诸泫达 《应用数学进展》 2023年第7期3153-3164,共12页
研究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统。运用待定系数的相关方法,探究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统的明暗孤子解。最终获得了奇异波解和周期解等不同类型的精确解,并用Mathematica画出... 研究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统。运用待定系数的相关方法,探究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统的明暗孤子解。最终获得了奇异波解和周期解等不同类型的精确解,并用Mathematica画出了相关的解的图像,并且本文所获得的孤子解是全新的。 展开更多
关键词 (2 + 1)非线性Ginzburg-Landau方程 广义Zakharov系统 孤子解 待定系数法
下载PDF
(2+1)维非线性薛定锷方程的无限维李代数及其可积性
8
作者 赵学庆 吕景发 陆开一 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第1期74-77,共4页
用延拓 ( Prolongation)方法讨论 ( 2 + 1 )维非线性薛定锷方程的隐对称结构及其可积性 .给出了它的无限维李代数表示 。
关键词 延拓方法 隐对称结构 可积性 (2+1)非线性薛定锷方程 无限李代数 非线性光学物理
下载PDF
(2+1)维非线性发展方程的对称约化和显式解 被引量:19
9
作者 张颖元 刘希强 王岗伟 《量子电子学报》 CAS CSCD 北大核心 2012年第4期411-416,共6页
利用相容方法,得到了(2+1)维非线性发展方程的对称,并根据相应的特征方程组得到了(2+1)维非线性发展方程的相似约化,同时得到了一些新的显式解。
关键词 (2+1)非线性发展方程 对称约化 显式解
下载PDF
(2+1)维非线性分数阶Zoomeron方程的新精确解 被引量:5
10
作者 黄春 孙峪怀 +1 位作者 李钊 张健 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第1期51-54,共4页
通过复变换将高维非线性分数阶偏微分方程转化为整数阶常微分方程,然后利用扩展的(G'/G)-展开法,构建(2+1)维非线性分数阶Zoomeron方程的新精确解,其中包括含参数的双曲函数解、三角函数解和有理数解.
关键词 (2+1)非线性分数阶Zoomeron方程 扩展的(G'/G)-展开法 精确解
下载PDF
应用Riccati-Bernoulli辅助方程求解广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程 被引量:7
11
作者 石兰芳 王明灿 钱正雅 《应用数学和力学》 CSCD 北大核心 2020年第7期786-795,共10页
研究了Riccati-Bernoulli辅助方程法,并应用这种方法得到广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程的精确行波解.这些解包括有理函数、三角函数、双曲函数和指数函数.应用这种方法求解过程简洁有效.该研究对于数学... 研究了Riccati-Bernoulli辅助方程法,并应用这种方法得到广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程的精确行波解.这些解包括有理函数、三角函数、双曲函数和指数函数.应用这种方法求解过程简洁有效.该研究对于数学物理方程领域诸多非线性偏微分方程精确解的探究具有重要的意义. 展开更多
关键词 Riccati-Bernoulli辅助方程 广义非线性Schrodinger方程 (2+1)非线性Ginzburg-Landau方程 行波解
下载PDF
(2+1)维非线性薛定谔方程的怪波解 被引量:2
12
作者 程丽 张翼 《长江大学学报(自科版)(上旬)》 2016年第3期35-39,4,共5页
应用Hirota双线性算子方法得到(2+1)维非线性薛定谔方程的周期解和其极限解,利用sato算子理论把(1+1)维非线性薛定谔方程的Grammian解转化为(2+1)维非线性薛定谔方程非奇异的有理解,从而得到(2+1)维非线性薛定谔方程的一阶和高阶怪波解... 应用Hirota双线性算子方法得到(2+1)维非线性薛定谔方程的周期解和其极限解,利用sato算子理论把(1+1)维非线性薛定谔方程的Grammian解转化为(2+1)维非线性薛定谔方程非奇异的有理解,从而得到(2+1)维非线性薛定谔方程的一阶和高阶怪波解。研究结果说明了高维的非线性薛定谔方程具有有理分式的怪波解,这些方法同样适用于其他的高维薛定谔型方程,如Mel’nikov方程、Fokas系统等。 展开更多
关键词 (2+1)非线性薛定谔方程 HIROTA双线性方法 周期解 怪波解
下载PDF
两个(2+1)维非线性方程的一组行波解 被引量:1
13
作者 尹丽 朱云 《河南大学学报(自然科学版)》 CAS 北大核心 2010年第3期229-233,共5页
利用G′/G展开法给出(2+1)维Burgers方程和(2+1)维色散长波方程的一组G′/G结构的行波解.当解中参数取定某些特殊值时,将得到这两个方程的孤波解.
关键词 (G′/G)展开法 行波解 (2+1)BURGERS方程 (2+1)色散长波方程
下载PDF
(2+1)维非线性薛定谔方程的线畸形波及其传播特性
14
作者 楼吉辉 胡文成 +1 位作者 赵辟 张解放 《商丘师范学院学报》 CAS 2013年第6期34-38,共5页
采用一个通用的理论,即用相似变换的方法,研究构建了(2+1)维非线性薛定谔方程的精确畸形波解,并进一步讨论了一阶、二阶光学畸形波的传输特性,我们提出的线畸形波概念在理论和应用方面都具有启迪价值.
关键词 (2+1) 非线性薛定谔方程 相似变换 线畸形波
下载PDF
(2+1)维非线性偏微分方程的精确解 被引量:1
15
作者 鱼翔 《玉溪师范学院学报》 2015年第4期13-17,共5页
利用李群分析法得到了(2+1)维Calogero-Bogoyavlenskii-Schiff方程的对称及不变解,并求得该方程的新的精确解,包括雅克比椭圆函数解、三角函数解.
关键词 (2+1)CBS方程 对称群 群不变解 精确解
下载PDF
2+1维非线性KDV方程组的单行波解分类
16
作者 代冬岩 朱桂英 李艳凤 《黑龙江八一农垦大学学报》 2017年第4期133-136,共4页
应用多项式的完全判别系统,以分类的形式给出2+1维非线性KDV方程组的单行波解,这个方法能够获得方程组的全部精确解,其中一部分是新解。同时通过赋予方程中参数具体数值,构造出单行波解的具体结构和波形图。
关键词 多项式完全判别系统 2+1非线性KDV方程 单行波解
下载PDF
(2+1)维非线性发展方程的对称约化及精确解
17
作者 李宁 刘希强 张颖元 《井冈山大学学报(自然科学版)》 2013年第3期5-9,共5页
利用相容性方法,得到了(2+1)维mKdV-KP的非经典对称及相似约化,并进一步得到了该方程的一些新的精确解,包括双曲函数解,三角函数解,有理函数解,椭圆函数解等。
关键词 相容性方法 (2+1)mKdV-KP方程 精确解 对称 相似约化
下载PDF
具有分布系数的(2+1)维非线性薛定谔方程的精确自相似解
18
作者 费金喜 《丽水学院学报》 2013年第5期22-26,共5页
在已知的映射方程解的基础之上,利用自相似映射方法,通过选择合适的系统参数,给出具有分布系数的(2+1)维非线性薛定谔系统丰富的精确自相似解,得出系统的可积约束条件,并讨论自相似解的动力学行为。
关键词 (2+1)非线性薛定谔系统 自相似映射 自相似解 动力学行为
下载PDF
(2+1)维变系数非线性KP方程新推广解
19
作者 靳玲花 白慧 李珊珊 《长春工程学院学报(自然科学版)》 2022年第4期125-128,共4页
为适应非线性发展方程包括变系数非线性发展方程求解的需要,试图探求辅助方程多样化和解的形式的一般化,对王明亮教授提出的(G′/G)-展开法进行了更有意义的推广。为验证此推广的可靠性与有效性,将它再次应用到(2+1)维广义圆柱变系数KP... 为适应非线性发展方程包括变系数非线性发展方程求解的需要,试图探求辅助方程多样化和解的形式的一般化,对王明亮教授提出的(G′/G)-展开法进行了更有意义的推广。为验证此推广的可靠性与有效性,将它再次应用到(2+1)维广义圆柱变系数KP方程中以期寻求内涵更为丰富的精确解,最终取得了成功。说明此推广具有可靠性和安全性。 展开更多
关键词 发展方程 精确解 推广的(G′/G)-展开法 (2+1)广义圆柱KP方程
下载PDF
竞争向列相液晶中(1+2)维空间光孤子
20
作者 张萌 浦绍质 +3 位作者 杜明欣 孙莹 王小孟 梁影 《红外与激光工程》 EI CSCD 北大核心 2024年第10期139-151,共13页
基于JUNG等人提出的竞争非局域模型,研究了竞争型向列相液晶中(1+2)维空间光孤子的传输特性。利用变分法给出了孤子临界功率解析表达式,发现当热非局域程度固定时,临界功率随分子取向效应非局域程度的变化规律与随热非线性系数的变化规... 基于JUNG等人提出的竞争非局域模型,研究了竞争型向列相液晶中(1+2)维空间光孤子的传输特性。利用变分法给出了孤子临界功率解析表达式,发现当热非局域程度固定时,临界功率随分子取向效应非局域程度的变化规律与随热非线性系数的变化规律一致:随着分子取向非局域程度或热非线性系数的增加,临界功率由功率不等的两个分支逐渐重合为功率相等的一支;当分子取向效应非局域程度和热非线性系数固定时,随着热非局域程度的增加,临界功率由功率相等的一支分为功率不等的两个分支。利用光束传输方法发现,只有功率不等分支上的点对应的(1+2)维空间光孤子才能稳定传输。该研究结果可为竞争非局域介质中(1+2)维空间光孤子的实验研究以及全光互联应用提供理论基础。 展开更多
关键词 非线性光学 竞争非局域 向列相液晶 空间光孤子 (1+2)
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部