期刊文献+
共找到338篇文章
< 1 2 17 >
每页显示 20 50 100
(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程的新精确解的构建
1
作者 黄春 《理论数学》 2024年第10期74-80,共7页
非线性Ablowitz-Kaup-Newell-Segur方程是一类应用广泛的非线性偏微分方程。(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程常用于描述孤立波在光纤中传播的物理过程,本文利用复行波变换和扩展的Tanh-函数展开法,获得了(2 + 1)维... 非线性Ablowitz-Kaup-Newell-Segur方程是一类应用广泛的非线性偏微分方程。(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程常用于描述孤立波在光纤中传播的物理过程,本文利用复行波变换和扩展的Tanh-函数展开法,获得了(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程的系列新的精确行波解。The Ablowitz-Kaup-Newell-Segur (AKNS) equations, a class of nonlinear partial differential equations, find their utility in a wide array of applications. The space-time fractional (2 + 1)-dimensional AKNS equation, in particular, is capable of describing the physical process of solitary wave propagation in optical fibers. A new class of exact traveling wave solutions of (2 + 1)-dimensional generalized fractional AKNS equation are obtained by employing complex traveling wave transformation and extended Tanh expansion method. 展开更多
关键词 (2 + 1)分数阶Ablowitz-Kaup-Newell-Segur方程 Riemann-Liouville分数阶导数 精确行波解 Tanh-函数展开法
下载PDF
广义(2+1)维Zakharov-Kuznetsov方程的精确解
2
作者 华瑞 王振立 孙亮吉 《枣庄学院学报》 2023年第5期47-52,共6页
利用广义代数法,研究广义(2+1)维Zakharov-Kuznetsov方程,得到很多该方程的新精确解,包括有理函数解、雅可比椭圆函数解、混合椭圆函数解、扭结解、奇异解、三角函数解等。这些解对解释许多物理现象及工程应用具有重要的指导意义。
关键词 广义(2+1)zakharov-kuznetsov方程 广义代数法 精确解 齐次平衡法
下载PDF
时间分数阶(2+1)-维扩展Fisher-Kolmogorov方程的精确解
3
作者 王美乐 胡彦霞 《内蒙古大学学报(自然科学版)》 CAS 2024年第3期232-243,共12页
利用Lie方法对一类时间分数阶(2+1)-维扩展Fisher-Kolmogorov方程进行对称分析,并求得该方程的不变解,借助不变解对方程进行降维处理。对引入分数阶复变换得到的常微分方程运用辅助函数法,从而得到这类时间分数阶方程在参数满足各种不... 利用Lie方法对一类时间分数阶(2+1)-维扩展Fisher-Kolmogorov方程进行对称分析,并求得该方程的不变解,借助不变解对方程进行降维处理。对引入分数阶复变换得到的常微分方程运用辅助函数法,从而得到这类时间分数阶方程在参数满足各种不同情况下的精确解,包括三角函数解和孤波解等。最后绘出两类典型精确解的行波图。 展开更多
关键词 (2+1)-扩展Fisher-Kolmogorov方程 Lie方法 辅助函数法 精确解
下载PDF
一类(2+1)-维非线性波方程的精确解
4
作者 熊宇璐 崔静易 黄在堂 《南宁师范大学学报(自然科学版)》 2024年第2期19-29,共11页
该文通过不同的方法得到了(2+1)-维非线性波方程的不同类型的精确解。首先运用同宿测试法,得到了方程的呼吸解和孤立波解。运用三波法,得到了单、双呼吸解,然后通过参数极限法,将这两种解退化得到lump解。其次,在N-孤子解的基础上,分别... 该文通过不同的方法得到了(2+1)-维非线性波方程的不同类型的精确解。首先运用同宿测试法,得到了方程的呼吸解和孤立波解。运用三波法,得到了单、双呼吸解,然后通过参数极限法,将这两种解退化得到lump解。其次,在N-孤子解的基础上,分别添加不同的约束条件,得到了Q-呼吸解和Y-型孤子解。最后,在Y-型孤子解的基础上增加了约束条件,得到了呼吸解与Y-型孤子解组成的相互作用解。 展开更多
关键词 (2+1)-非线性波方程 lump解 Q-呼吸解 Y-型孤子解 相互作用解
下载PDF
(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统中的明暗光孤子解
5
作者 诸泫达 《应用数学进展》 2023年第7期3153-3164,共12页
研究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统。运用待定系数的相关方法,探究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统的明暗孤子解。最终获得了奇异波解和周期解等不同类型的精确解,并用Mathematica画出... 研究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统。运用待定系数的相关方法,探究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统的明暗孤子解。最终获得了奇异波解和周期解等不同类型的精确解,并用Mathematica画出了相关的解的图像,并且本文所获得的孤子解是全新的。 展开更多
关键词 (2 + 1)非线性Ginzburg-Landau方程 广义zakharov系统 孤子解 待定系数法
下载PDF
(2+1)维modified Zakharov-Kuznetsov方程的复合型新解
6
作者 套格图桑 《高校应用数学学报(A辑)》 CSCD 北大核心 2017年第1期33-40,共8页
给出函数变换,变量分离形式解与第一种椭圆方程相结合的方法,构造了(2+1)维modified Zakharov-Kuznetsov(m ZK)方程的多种复合型新解.步骤一,给出两种函数变换,将(2+1)维m ZK方程转化为能够获得变量分离解的非线性发展方程.步骤二,给出... 给出函数变换,变量分离形式解与第一种椭圆方程相结合的方法,构造了(2+1)维modified Zakharov-Kuznetsov(m ZK)方程的多种复合型新解.步骤一,给出两种函数变换,将(2+1)维m ZK方程转化为能够获得变量分离解的非线性发展方程.步骤二,给出非线性发展方程的变量分离形式解,通过第一种椭圆方程及其相关结论,构造了(2+1)维m ZK方程的双孤子解和双周期解等复合型新解. 展开更多
关键词 函数变换 (2+1)mZK方程 第一种椭圆方程 复合型新解
下载PDF
2维薛定谔方程的一种高精度紧致差分格式
7
作者 依力米努尔·尼扎木 开依沙尔·热合曼 《江西师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期189-193,共5页
该文对2维薛定谔方程利用局部一维化方法,将2维方程分裂为x、y方向的2个1维薛定谔方程,然后采用6阶紧致格式的离散方法来处理空间变量的2阶导数项,将薛定谔方程转化为一个常微分方程组.通过L-稳定Simpson方法对上述空间离散化得到的常... 该文对2维薛定谔方程利用局部一维化方法,将2维方程分裂为x、y方向的2个1维薛定谔方程,然后采用6阶紧致格式的离散方法来处理空间变量的2阶导数项,将薛定谔方程转化为一个常微分方程组.通过L-稳定Simpson方法对上述空间离散化得到的常微分方程进行离散化,得到了一种具有空间6阶精度和时间3阶精度的格式,并证明了该格式无条件稳定性.并通过数值模拟和对比方法验证了格式的有效性. 展开更多
关键词 2薛定谔方程 高精度紧致差分格式 局部1化方法 L-稳定Simpson方法
下载PDF
2维带色散4阶扩散方程的高精度紧致格式
8
作者 王红玉 李冉冉 开依沙尔·热合曼 《安徽大学学报(自然科学版)》 CAS 北大核心 2024年第4期27-35,共9页
针对1,2维带色散4阶扩散方程提出了一种高精度紧致格式.首先采用局部1维化方法将2维问题转化为x,y方向的两个1维带色散4阶扩散方程,其次分别对3,4阶空间导数进行6阶紧致格式离散,把带色散4阶扩散方程转化为一个常微分方程组,再利用求解... 针对1,2维带色散4阶扩散方程提出了一种高精度紧致格式.首先采用局部1维化方法将2维问题转化为x,y方向的两个1维带色散4阶扩散方程,其次分别对3,4阶空间导数进行6阶紧致格式离散,把带色散4阶扩散方程转化为一个常微分方程组,再利用求解常微分方程组的L-稳定的Simpson方法构造时间3阶、空间6阶精度的数值格式,并证明该格式是绝对稳定的.通过数值实验和比较,验证论文格式的有效性. 展开更多
关键词 2带色散4阶扩散方程 高精度紧致差分格式 CRANK-NICOLSON格式 局部1化方法 L-稳定Simpson格式
下载PDF
(2+1)维Zakharov-Kuznetsov方程的Theta周期波解
9
作者 李玉红 王鸿章 刁群 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期19-22,共4页
给出椭圆方程的一组Theta周期波解,结合它的一个Backlund变换,得到这个椭圆方程的无穷序列Theta函数周期波解,最后利用这个椭圆方程作为辅助方程,借助于计算机符号计算软件Mathematica,得到了(2+1)维Zakharov-Kuznetsov方程的无穷序列Th... 给出椭圆方程的一组Theta周期波解,结合它的一个Backlund变换,得到这个椭圆方程的无穷序列Theta函数周期波解,最后利用这个椭圆方程作为辅助方程,借助于计算机符号计算软件Mathematica,得到了(2+1)维Zakharov-Kuznetsov方程的无穷序列Theta函数周期波解. 展开更多
关键词 (2+1)zakharov—kuznetsov方程 Backlund变换 Theta函数周期波解
下载PDF
(2+1)维AKNS方程的行波精确解及扰动结构
10
作者 芦长玲 陈芳 康晓蓉 《西华大学学报(自然科学版)》 CAS 2023年第2期98-102,110,共6页
针对(2+1)维AKNS方程,应用初值扰动法和截断函数展开法,结合Maple计算,获得了方程带初值扰动的系列显式精确解,分别讨论了准周期波、Gauss波和孤波对准扭结波的扰动结构。
关键词 (2+1)AKNS方程 初值扰动法 截断函数展开法 精确解 扰动结构
下载PDF
(2+1)维Kadomtsev-Petviashvil方程的Weierstrass椭圆函数解
11
作者 贾东婧 扎其劳 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2023年第2期139-146,共8页
利用Weierstrass型F-展开法求得(2+1)维Kadomtsev-Petviashvil(KP)方程的Weierstrass椭圆函数解。通过确定Weierstrass椭圆函数和Jacobi椭圆函数的转换公式,将Weierstrass椭圆函数解转化为Jacobi椭圆函数解。在椭圆模数取0或1极限的状态... 利用Weierstrass型F-展开法求得(2+1)维Kadomtsev-Petviashvil(KP)方程的Weierstrass椭圆函数解。通过确定Weierstrass椭圆函数和Jacobi椭圆函数的转换公式,将Weierstrass椭圆函数解转化为Jacobi椭圆函数解。在椭圆模数取0或1极限的状态下,Jacobi椭圆函数解分别退化为三角函数解或双曲函数解。此外,通过绘制图像说明所得解的动态特性。 展开更多
关键词 Weierstrass椭圆函数解 Weierstrass型F-展开法 (2+1)KP方程
下载PDF
(2+1)维Zakharov方程的自相似变换和线怪波簇激发
12
作者 张解放 俞定国 金美贞 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第8期138-147,共10页
首先建立(2+1)维(二维空间和一维时间)Zakharov方程的自相似变换,并将该系统转换为(1+1)维非线性薛定谔(nonlinear Schr?dinger, NLS)方程;然后基于该相似变换和已知的(1+1)维NLS方程有理形式解,通过选择合适参数得到了(2+1)维Zakharov... 首先建立(2+1)维(二维空间和一维时间)Zakharov方程的自相似变换,并将该系统转换为(1+1)维非线性薛定谔(nonlinear Schr?dinger, NLS)方程;然后基于该相似变换和已知的(1+1)维NLS方程有理形式解,通过选择合适参数得到了(2+1)维Zakharov方程在x-y平面上丰富的线怪波簇激发,发现产生线怪波簇最大辐值时的传播距离z值完全不同,而且形状和幅度可以得到有效调控;最后借助图示展现了二维怪波的传播特征.此外,发现在x-y平面上,当参数γ=1时,呈现线怪波;而当参数γ/=1时,线怪波转变为离散的局域怪波.随参数γ的增大,可以在x-y平面限定区域获得时空局域的怪波,这与Peregrine在(1+1)维NLS方程中发现的“Kuznetsov-Ma孤子”(Kuznetsov-Masoliton,KMS)或“Akhmediev呼吸子”(Akhmedievbreather,AB)极限情形的“Peregrine孤子”(Peregrine soliton, PS)类似.本文提出的(2+1)维Zakharov方程怪波方法可以作为获得高维怪波激发的有效途径,并推广应用于其他(2+1)维非线性系统. 展开更多
关键词 线怪波 自相似变换 zakharov方程 (2+1)
下载PDF
(2+1)维广义Hietarinta-type方程的呼吸解和高阶lump-type解
13
作者 韩莉慧 苏道毕力格 李美玉 《内蒙古工业大学学报(自然科学版)》 2023年第4期289-293,共5页
为了构造(2+1)维广义Hietarinta-type方程丰富的精确解,基于Hirota双线性方法研究该方程。Hirota双线性方法是一种求非线性发展方程孤子解的简单而直接的代数方法。近年来该方法已经在构造非线性发展方程精确解的研究领域上得到了广泛... 为了构造(2+1)维广义Hietarinta-type方程丰富的精确解,基于Hirota双线性方法研究该方程。Hirota双线性方法是一种求非线性发展方程孤子解的简单而直接的代数方法。近年来该方法已经在构造非线性发展方程精确解的研究领域上得到了广泛的应用。基于该方法,构造非线性发展方程的非线性波对数学、物理、力学等学科中的高维非线性问题的研究有非常重要的理论和应用价值。利用Hirota双线性方法给出了(2+1)维广义Hietarinta-type方程的双线性形式,并运用符号计算软件Maple获得了该方程的呼吸解和高阶lump-type解。再通过选择适当的参数,绘制了这些解的三维图、等高线图和密度图,并分析和描述了解的动力学性质。这些结果丰富了目前关于(2+1)维广义Hietarinta-type方程文献中的结果。 展开更多
关键词 (2+1)广义Hietarinta-type方程 双线性形式 呼吸解 高阶lump-type解
下载PDF
tan(φ(ξ)/2)-展开法和(2+1)维非线性立方Klein-Gordon方程
14
作者 项芳婷 赵小山 《江西科学》 2023年第3期436-439,共4页
运用tan(φ(ξ)/2)-展开法并借助符合计算系统Maple,求出了(2+1)维非线性立方Klein-Gordon方程的多种精确解,这些解包括周期解、孤子解、指数函数解。
关键词 tan(φ(ξ)/2)-展开法 (2+1)非线性立方Klein-Gordon方程 符号计算
下载PDF
广义射影Riccati方程方法与(2+1)维色散长波方程新的精确行波解 被引量:22
15
作者 智红燕 陈勇 张鸿庆 《数学物理学报(A辑)》 CSCD 北大核心 2005年第S1期956-964,共9页
助于符号计算软件Maple,通过一种构造非线性偏微分方程更一般形式行波解的直接方 法,即改进的广义射影Ricccati方程方法,求解(2+1)维色散长波方程,得到该方程的新的 更一般形式的行波解,包括扭状孤波解,钟状解,孤子解和周期解.并对部... 助于符号计算软件Maple,通过一种构造非线性偏微分方程更一般形式行波解的直接方 法,即改进的广义射影Ricccati方程方法,求解(2+1)维色散长波方程,得到该方程的新的 更一般形式的行波解,包括扭状孤波解,钟状解,孤子解和周期解.并对部分新形式孤波解画 图示意. 展开更多
关键词 广义射影Riccati方程方法 (2+1)色散长波方程 行波解
下载PDF
(2+1)维非线性发展方程的对称约化和显式解 被引量:19
16
作者 张颖元 刘希强 王岗伟 《量子电子学报》 CAS CSCD 北大核心 2012年第4期411-416,共6页
利用相容方法,得到了(2+1)维非线性发展方程的对称,并根据相应的特征方程组得到了(2+1)维非线性发展方程的相似约化,同时得到了一些新的显式解。
关键词 (2+1)非线性发展方程 对称约化 显式解
下载PDF
变系数(2+1)维Broer-Kaup方程的精确解 被引量:15
17
作者 张金良 王跃明 +1 位作者 王明亮 方宗德 《原子与分子物理学报》 CAS CSCD 北大核心 2003年第1期92-94,共3页
利用齐次平衡原则 ,导出了变系数 (2 +1)维Broer Kaup方程的B cklund变换 (BT) ,并由该BT ,求出了(2 +1)维Broer Kaup方程的各种形式的精确解。
关键词 变系数(2十1)Broer—Kaup方程 齐次平衡原则 Backlund变换(BT) 精确解
下载PDF
2+ 1 维Beoer-Kaup 方程组的多孤子解(英文) 被引量:3
18
作者 白成林 刘希强 +1 位作者 白成杰 徐炳振 《光子学报》 EI CAS CSCD 1999年第11期1029-1031,共3页
利用扩展齐次平衡法求出了2+ 1 维Beoer-Kaup 方程组的多孤子解,方法简单直接且具有普遍意义.
关键词 2+1 B-K方程 多孤子解
下载PDF
(2+1)维Nizhnik方程的Jacobi椭圆函数周期解 被引量:5
19
作者 张金良 程东明 +1 位作者 王明亮 方宗德 《工程数学学报》 CSCD 北大核心 2005年第1期113-117,共5页
利用最近提出的 F-展开法,导出了 (2+1) 维 Nizhnik 方程的由 Jacobi 椭圆函数表示的周期解, 并且在极限情况下,可以推得 (2+1) 维 Nizhnik 方程的孤波解以及其他形式解。
关键词 (2+1)Nizhnik方程 F-展开法 JACOBI椭圆函数 周期解 孤波解
下载PDF
利用(G′/G)-展开法求解2+1维破裂孤子方程组 被引量:12
20
作者 牛艳霞 李二强 张金良 《河南科技大学学报(自然科学版)》 CAS 2008年第5期73-76,共4页
利用最近提出的(G′/G)-展开法,并借助于计算机代数系统Mathematica,获得了2+1维破裂孤子方程组丰富的显式行波解,分别以含两个任意参数的双曲函数、三角函数和有理函数表示,该方法也适用于其它非线性波方程(组)。
关键词 2+1破裂孤子方程 (G′/G)-展开法 显式行波解 齐次平衡
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部