期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Interaction solutions and localized waves to the(2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
1
作者 闫鑫颖 刘锦洲 辛祥鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期199-205,共7页
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé... This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature. 展开更多
关键词 (2+1)-dimensional variable coefficient Hirota-Satsuma-Ito equation Hirota bilinear method long wave limit method N-soliton solutions
下载PDF
New Exact Solutions to (2+1)-Dimensional Variable Coefficients Broer-Kaup Equations
2
作者 ZHU Jia-Min 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3X期393-396,共4页
In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. The... In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found. 展开更多
关键词 variable coefficient generalized projected Ricatti equation method 2+l)-dimensional variable coefficients broer-kaup equations Weierstrass function solution solitary wave solution trigonometric function solution
下载PDF
New Exact Solutions for the Generalized (2 + 1)-dimensional Nonlinear Schroedinger Equation with Variable Coefficients
3
作者 JIANG Zhi-ping 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第2期224-231,共8页
With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coeff... With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coefficients. These solutions include solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. 展开更多
关键词 2+1)-dimensions nonlinear SchrSdinger equation variable coefficients projected Ricatti equation expansion method
下载PDF
Symmetry Groups and New Exact Solutions to (2+1)-Dimensional Variable Coefficient Canonical Generalized KP Equation 被引量:7
4
作者 ZHANG Li-Hua LIU Xi-Qiang BAI Cheng-Lin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3X期405-410,共6页
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation... In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation. 展开更多
关键词 2+1)-dimensional variable coefficient canonical generalized KP (VCCGKP) equation modified CK's'direct method symmetry groups Lie symmetry similarity reductions new exact solutions
下载PDF
New Multiple Soliton-like and Periodic Solutions for (2+l)-Dimensional Canonical Generalized KP Equation with Variable Coefficients 被引量:3
5
作者 ZHANG Li-Hua LIU Xi-Qiang BAI Cheng-Lin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5X期793-798,共6页
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit ... In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients. 展开更多
关键词 2+1)-dimensional canonical generalized (CGKP) equation with variable coefficients tanh function method Riccati equation soliton-like and periodic solutions
下载PDF
On an Auto-Baecklund Transformation for (2+1)-Dimensional VariableCoefficient Generalized KP Equations and Exact Solutions 被引量:1
6
作者 BAICheng-Jie BAICheng-Lin +1 位作者 HANJi-Guang ZHAOHong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4期677-680,共4页
By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two ... By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves. 展开更多
关键词 extended homogeneous balance method (2+1)-dimensional variable coefficientgeneralized KP equation auto-Baecklund transformation exact solutions
下载PDF
Wronskian and Grammian Solutions for Generalized (n + 1)-Dimensional KP Equation with Variable Coefficients
7
作者 Hongwei Fu Yang Song Juan Xu 《Applied Mathematics》 2012年第2期154-157,共4页
The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of ... The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated. 展开更多
关键词 Generalized variable coefficient (n + 1)-dimensional KP equation HIROTA Bilinear Method WRONSKIAN SOLUTION Grammian SOLUTION
下载PDF
Solving (2+1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method 被引量:1
8
作者 苏卡林 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期40-48,共9页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. 展开更多
关键词 modified variable separated ODE method 2 1-dimensional sine-Poisson equation explicit and exact solution
下载PDF
New Families of Rational Form Variable Separation Solutions to(2+1)-Dimensional Dispersive Long Wave Equations
9
作者 WEN Xiao-Yong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第5期789-793,共5页
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor... With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions. 展开更多
关键词 improved mapping approach variable separation method 2+1)-dimensional dispersive long wave equations symbolic computation
下载PDF
A Series of Variable Separation Solutions and New Soliton Structures of (2+1)-Dimensional Korteweg-de Vries Equation
10
作者 XU Chang-Zhi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3X期403-406,共4页
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation m... Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately. 展开更多
关键词 variable separation approach 2+1)-dimensional KdV equation new soliton excitation
下载PDF
LOCALIZED COHERENT STRUCTURES OF THE (2+1)-DIMENSIONAL HIGHER ORDER BROER-KAUP EQUATIONS
11
作者 ZHANG Jie-fang(张解放) +1 位作者 LIU Yu-lu(刘宇陆) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第5期549-556,共8页
By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended hom... By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended homogeneous balance method for the higher order (2 + 1)-dimensional Broer-Kaup equations. Starting from this linearization form equation, a variable separation solution with the entrance of some arbitrary functions and some arbitrary parameters was constructed. The quite rich localized coherent structures were revealed. This method, which can be generalized to other (2 + I) -dimensional nonlinear evolution equation, is simple and powerful. 展开更多
关键词 higher order broer-kaup equation (2+1)-dimension coherent structure homogeneous balance method
下载PDF
Exotic Localized Coherent Structures of New (2+1)-Dimensional Soliton Equation 被引量:8
12
作者 ZHANG Jie-Fang HUANG Wen-Hua ZHENG Chun-Long 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第11期517-522,共6页
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryf... The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks. 展开更多
关键词 variable separation approach coherent structures NEW (2+1)-dimensional SOLITON equation
下载PDF
New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation 被引量:2
13
作者 马红彩 葛东杰 于耀东 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4344-4353,共10页
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a cl... Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution). 展开更多
关键词 2+1)-dimensional Burgers equation mutilinear variable separation approach periodicwave solutions localized excitation
下载PDF
Solutions of novel soliton molecules and their interactions of(2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation 被引量:1
14
作者 Hong-Cai Ma Yi-Dan Gao Ai-Ping Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期77-83,共7页
The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and thei... The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and their interactions in(2+1)-dimensional potential Boiti–Leon-Manna–Pempinelli equation.Dromion molecules,ring molecules,lump molecules,multi-instantaneous molecules,and their interactions are obtained.Then we draw corresponding images with maple software to study their dynamic behavior. 展开更多
关键词 variable separation method Hirota bilinear method dromion solution (2+1)-dimensional potential Boiti–Leon–Manna–Pempinelli equation
下载PDF
New Periodic Wave Solutions and Their Interaction for (2+1)-dimensional KdV Equation
15
作者 GE Dong-jie MA Hong-cai YU Yao-dong 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第4期525-536,共12页
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain... A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized. 展开更多
关键词 2+1)-dimensional KdV equation multilinear variable separation approach elliptic functions periodic wave solutions localized excitations interaction property nonelastic completely elastic
下载PDF
Integrability and Solutions of the (2+1)-Dimensional Broer-Kaup Equation with Variable Coefficients 被引量:1
16
作者 王路华 贺劲松 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第9期387-392,共6页
The integrability of the (2+l)-dimensional Broer-Kaup equation with variable coefficients (VCBK) is verified by finding a transformation mapping it to the usual (2+l)-dimensional Broer-Kaup equation (BK). Th... The integrability of the (2+l)-dimensional Broer-Kaup equation with variable coefficients (VCBK) is verified by finding a transformation mapping it to the usual (2+l)-dimensional Broer-Kaup equation (BK). Thus the solutions of the (2+1)-dimensional VCBK are obtained by making full use of the known solutions of the usual (2+1)dimensional IRK. Two new integrable models are given by this transformation, their dromion-like solutions and rogue wave solutions are also obtained. Further, the velocity of the dromion-like solutions can be designed and the center of the rogue wave solutions can be controlled artificially because of the appearance of the four arbitrary functions in the transformation. 展开更多
关键词 2+l)-dimensional Broer Kaup equation with variable coefficients INTEGRABILITY 21)-dimen-sional broer-kaup equation dromion-like rogue wave
原文传递
Exotic Localized Coherent Structures of New(2+1)-Dimensional Soliton Equation 被引量:2
17
作者 ZHANGJie-Fang HUANGWen-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第5期517-522,共6页
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary... The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks. 展开更多
关键词 variable separation approach coherent structures new (2+1)-dimensional soliton equation
下载PDF
变系数(2+1)维Broer-Kaup方程的精确解 被引量:15
18
作者 张金良 王跃明 +1 位作者 王明亮 方宗德 《原子与分子物理学报》 CAS CSCD 北大核心 2003年第1期92-94,共3页
利用齐次平衡原则 ,导出了变系数 (2 +1)维Broer Kaup方程的B cklund变换 (BT) ,并由该BT ,求出了(2 +1)维Broer Kaup方程的各种形式的精确解。
关键词 变系数(21)维Broer—Kaup方程 齐次平衡原则 Backlund变换(BT) 精确解
下载PDF
变系数(2+1)维Broer-Kaup方程的新精确解 被引量:12
19
作者 李德生 《原子与分子物理学报》 CAS CSCD 北大核心 2004年第1期133-138,共6页
通过一个简单的变换 ,变系数 (2 +1)维Broer Kaup方程被简化为人们熟知的变系数Burgers方程。利用近年来广泛使用的齐次平衡法和tanh 函数法 ,获得了变系数 (2 +1)维Broer Kaup方程的一些新的精确解。
关键词 变系数(2+1)维broer-kaup方程 齐次平衡法 tanh-函数法 精确解
下载PDF
变系数(2+1)-维Broer-Kaup方程的分离变量解
20
作者 李志斌 李德生 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2005年第8期1074-1076,共3页
研究了变系数(2+1)-维B roer-Kaup方程的精确解问题,通过该方程的Backlund变换,找到该方程未知函数间的变换,从而将变系数(2+1)-维B roer-Kaup方程转化为一线性偏微分方程,利用分离变量法获得了变系数(2+1)-维B roer-Kaup方程一些新的... 研究了变系数(2+1)-维B roer-Kaup方程的精确解问题,通过该方程的Backlund变换,找到该方程未知函数间的变换,从而将变系数(2+1)-维B roer-Kaup方程转化为一线性偏微分方程,利用分离变量法获得了变系数(2+1)-维B roer-Kaup方程一些新的精确解,所的结果包含了已有文献中的有关结果并发现了一类新的分离变量解. 展开更多
关键词 变系数的(2+1)-维broer-kaup方程 分离变量解 分离变量法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部