We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide soli...We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.展开更多
Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of t...Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new B?cklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated.展开更多
A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensio...A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.展开更多
Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechan...Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.展开更多
The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corre...The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. The (1+1) dimensional displacement shallow water wave equation can be derived from the reductions when special symmetry parameters are chosen.展开更多
In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the co...In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions.展开更多
The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathem...The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathematical community.Thus,this paper purveys an analytical study of a generalized extended(2+1)-dimensional quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering.The Lie group theory of differential equations is utilized to compute an optimal system of one dimension for the Lie algebra of the model.We further reduce the equation using the subalgebras obtained.Besides,more general solutions of the underlying equation are secured for some special cases of n with the use of extended Jacobi function expansion technique.Consequently,we secure new bounded and unbounded solutions of interest for the equation in various solitonic structures including bright,dark,periodic(cnoidal and snoidal),compact-type as well as singular solitons.The applications of cnoidal and snoidal waves of the model in oceanography and ocean engineering for the first time,are outlined with suitable diagrams.This can be of interest to oceanographers and ocean engineers for future analysis.Furthermore,to visualize the dynamics of the results found,we present the graphic display of each of the solutions.Conclusively,we construct conservation laws of the understudy equation via the application of Noether’s theorem.展开更多
With the aid of binary Bell polynomial and a general Riemann theta function, we introduce how to obtain the exact periodic wave solutions by applying the generalized Dpˉ-operators in term of the Hirota direct method ...With the aid of binary Bell polynomial and a general Riemann theta function, we introduce how to obtain the exact periodic wave solutions by applying the generalized Dpˉ-operators in term of the Hirota direct method when the appropriate value of pˉ is determined. Furthermore, the resulting approach is applied to solve the extended(2+1)-dimensional Shallow Water Wave equation, and the periodic wave solution is obtained and reduced to soliton solution via asymptotic analysis.展开更多
This article considers time-dependent variable coefficients(2+1)and(3+1)-dimensional extended Sakovich equation.Painlevéanalysis and auto-Bäcklund transformation methods are used to examine both the consider...This article considers time-dependent variable coefficients(2+1)and(3+1)-dimensional extended Sakovich equation.Painlevéanalysis and auto-Bäcklund transformation methods are used to examine both the considered equations.Painlevéanalysis is appeared to test the integrability while an auto-Bäcklund transformation method is being presented to derive new analytic soliton solution families for both the considered equations.Two new family of exact analytical solutions are being obtained success-fully for each of the considered equations.The soliton solutions in the form of rational and exponential functions are being depicted.The results are also expressed graphically to illustrate the potential and physical behaviour of both equations.Both the considered equations have applications in ocean wave theory as they depict new solitary wave soliton solutions by 3D and 2D graphs.展开更多
In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, ...In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, we prove that the (2+ l)-dimensional generalization of shallow water wave equation possesses the Palnlev6 property under a certain condition, and its Lax pair is constructed by applying the singular manifold method. Based on the obtained Lax representation, the Darboux transformation (DT) is constructed. The first iterated solution, second iterated solution and a special N-soliton solution with an arbitrary function are derived with the resulting DT. Relevant properties are graphically illustrated, which might be helpful to understanding the propagation processes for ocean waves in shallow water.展开更多
The oscillatory motion on the ocean surface is a combination of a variety of different types of waves.The regularized waves are among them.Here,it is shown that they arise as solutions of the(1+2)-dimensional Benjamin...The oscillatory motion on the ocean surface is a combination of a variety of different types of waves.The regularized waves are among them.Here,it is shown that they arise as solutions of the(1+2)-dimensional Benjamin-Bona-Mahony equation(BBME).Numerous works on(1+1)-dimensional BBME were carried in the literature.In this paper,we consider the(1+2)-dimensional non-autonomous BBME,with time-dependent coefficients.The model equation is completely new.Our objective is to find the exact solutions and investigate the relevant phenomena.To solve this issue,the extended unified method is used to find the exact solutions in the form of semi-self similar and self similar solutions.To solve this issue,simi-larity transformations are introduced.Here,the generalized unified methods(GUM)are also used in the symbolic computations.The numerical results of these solutions are evaluated and are shown graphically.Different wave patterns of regularized waves in shallow water,near ocean shores,are observed.Oscilla-tory waves and vector of lumps with troughs are shown.The time-dependent coefficients are used,here,to control the different wave patterns that take the forms of the multi-U shaped wave with basins with a trough.Further pattern formation occurs,which is in the form of two layers of lumps with troughs.Wave tunneling is also observed.These waves patterns are novel.The stability of the steady state solutions is analyzed.It is found that the stability depends significantly on the dispersion coefficient.展开更多
The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the...The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples i11ustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries.展开更多
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ...In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.展开更多
The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory.The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial different...The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory.The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial differential systems.In this paper,we construct a(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli(eBLMP)equation which fails to pass the Painleve property.The D’Alembert-type wave of the eBLMP equation is still obtained by introducing one arbitrary function of the traveling-wave variable.The multi-solitary wave which should satisfy the velocity resonance condition is obtained by solving the Hirota bilinear form of the eBLMP equation.The dynamics of the three-soliton molecule,the three-kink soliton molecule,the soliton molecule bound by an asymmetry soliton and a one-soliton,and the interaction between the half periodic wave and a kink soliton molecule from the eBLMP equation are investigated by selecting appropriate parameters.展开更多
The propagation of waves in dispersive media,liquid flow containing gas bubbles,fluid flow in elastic tubes,oceans and gravity waves in a smaller domain,spatio-temporal rescaling of the nonlinear wave motion are delin...The propagation of waves in dispersive media,liquid flow containing gas bubbles,fluid flow in elastic tubes,oceans and gravity waves in a smaller domain,spatio-temporal rescaling of the nonlinear wave motion are delineated by the compound Korteweg-de Vries(KdV)-Burgers equation,the(2+1)-dimensional Maccari system and the generalized shallow water wave equation.In this work,we effectively derive abundant closed form wave solutions of these equations by using the double(G′/G,1/G)-expansion method.The obtained solutions include singular kink shaped soliton solutions,periodic solution,singular periodic solution,single soliton and other solutions as well.We show that the double(G′/G,1/G)-expansion method is an efficient and powerful method to examine nonlinear evolution equations(NLEEs)in mathematical physics and scientific application.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446)
文摘We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11975156 and 12175148)。
文摘Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new B?cklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated.
基金The project supported in part by National Natural Science Foundation of China under Grant No. 10272071 and the Science Research Foundation of Huzhou University under Grant No. KX21025
文摘A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.
基金Project supported by the Natural Science Foundation of Guangdong Province of China (Grant No.10452840301004616)the National Natural Science Foundation of China (Grant No.61001018)the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (Grant No.408YKQ09)
文摘Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.
基金supported by National Natural Science Foundation of China under Grant Nos.10475055 and 90503006
文摘The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. The (1+1) dimensional displacement shallow water wave equation can be derived from the reductions when special symmetry parameters are chosen.
文摘In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions.
文摘The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathematical community.Thus,this paper purveys an analytical study of a generalized extended(2+1)-dimensional quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering.The Lie group theory of differential equations is utilized to compute an optimal system of one dimension for the Lie algebra of the model.We further reduce the equation using the subalgebras obtained.Besides,more general solutions of the underlying equation are secured for some special cases of n with the use of extended Jacobi function expansion technique.Consequently,we secure new bounded and unbounded solutions of interest for the equation in various solitonic structures including bright,dark,periodic(cnoidal and snoidal),compact-type as well as singular solitons.The applications of cnoidal and snoidal waves of the model in oceanography and ocean engineering for the first time,are outlined with suitable diagrams.This can be of interest to oceanographers and ocean engineers for future analysis.Furthermore,to visualize the dynamics of the results found,we present the graphic display of each of the solutions.Conclusively,we construct conservation laws of the understudy equation via the application of Noether’s theorem.
基金Supported by Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention and Mitigation project under Grant No.2012010National Natural Science Foundation of China under Grant No.11271007+1 种基金Special Funds for Theoretical Physics of the National Natural Science Foundation of China under Grant No.11447205Shandong University of Science and Technology Research Fund under Grant No.2012KYTD105
文摘With the aid of binary Bell polynomial and a general Riemann theta function, we introduce how to obtain the exact periodic wave solutions by applying the generalized Dpˉ-operators in term of the Hirota direct method when the appropriate value of pˉ is determined. Furthermore, the resulting approach is applied to solve the extended(2+1)-dimensional Shallow Water Wave equation, and the periodic wave solution is obtained and reduced to soliton solution via asymptotic analysis.
文摘This article considers time-dependent variable coefficients(2+1)and(3+1)-dimensional extended Sakovich equation.Painlevéanalysis and auto-Bäcklund transformation methods are used to examine both the considered equations.Painlevéanalysis is appeared to test the integrability while an auto-Bäcklund transformation method is being presented to derive new analytic soliton solution families for both the considered equations.Two new family of exact analytical solutions are being obtained success-fully for each of the considered equations.The soliton solutions in the form of rational and exponential functions are being depicted.The results are also expressed graphically to illustrate the potential and physical behaviour of both equations.Both the considered equations have applications in ocean wave theory as they depict new solitary wave soliton solutions by 3D and 2D graphs.
基金Supported by the National Natural Science Foundation of China under Grant No.61072145the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No.SQKM201211232016
文摘In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, we prove that the (2+ l)-dimensional generalization of shallow water wave equation possesses the Palnlev6 property under a certain condition, and its Lax pair is constructed by applying the singular manifold method. Based on the obtained Lax representation, the Darboux transformation (DT) is constructed. The first iterated solution, second iterated solution and a special N-soliton solution with an arbitrary function are derived with the resulting DT. Relevant properties are graphically illustrated, which might be helpful to understanding the propagation processes for ocean waves in shallow water.
文摘The oscillatory motion on the ocean surface is a combination of a variety of different types of waves.The regularized waves are among them.Here,it is shown that they arise as solutions of the(1+2)-dimensional Benjamin-Bona-Mahony equation(BBME).Numerous works on(1+1)-dimensional BBME were carried in the literature.In this paper,we consider the(1+2)-dimensional non-autonomous BBME,with time-dependent coefficients.The model equation is completely new.Our objective is to find the exact solutions and investigate the relevant phenomena.To solve this issue,the extended unified method is used to find the exact solutions in the form of semi-self similar and self similar solutions.To solve this issue,simi-larity transformations are introduced.Here,the generalized unified methods(GUM)are also used in the symbolic computations.The numerical results of these solutions are evaluated and are shown graphically.Different wave patterns of regularized waves in shallow water,near ocean shores,are observed.Oscilla-tory waves and vector of lumps with troughs are shown.The time-dependent coefficients are used,here,to control the different wave patterns that take the forms of the multi-U shaped wave with basins with a trough.Further pattern formation occurs,which is in the form of two layers of lumps with troughs.Wave tunneling is also observed.These waves patterns are novel.The stability of the steady state solutions is analyzed.It is found that the stability depends significantly on the dispersion coefficient.
文摘The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples i11ustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries.
文摘In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.
基金supported by the National Natural Science meters restrain as the relation:Foundation of China Grant No.11775146.
文摘The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory.The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial differential systems.In this paper,we construct a(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli(eBLMP)equation which fails to pass the Painleve property.The D’Alembert-type wave of the eBLMP equation is still obtained by introducing one arbitrary function of the traveling-wave variable.The multi-solitary wave which should satisfy the velocity resonance condition is obtained by solving the Hirota bilinear form of the eBLMP equation.The dynamics of the three-soliton molecule,the three-kink soliton molecule,the soliton molecule bound by an asymmetry soliton and a one-soliton,and the interaction between the half periodic wave and a kink soliton molecule from the eBLMP equation are investigated by selecting appropriate parameters.
文摘The propagation of waves in dispersive media,liquid flow containing gas bubbles,fluid flow in elastic tubes,oceans and gravity waves in a smaller domain,spatio-temporal rescaling of the nonlinear wave motion are delineated by the compound Korteweg-de Vries(KdV)-Burgers equation,the(2+1)-dimensional Maccari system and the generalized shallow water wave equation.In this work,we effectively derive abundant closed form wave solutions of these equations by using the double(G′/G,1/G)-expansion method.The obtained solutions include singular kink shaped soliton solutions,periodic solution,singular periodic solution,single soliton and other solutions as well.We show that the double(G′/G,1/G)-expansion method is an efficient and powerful method to examine nonlinear evolution equations(NLEEs)in mathematical physics and scientific application.