Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmet...Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmetric solitons upon assigning appropriate values to some parameters.Furthermore,a double-peaked lump solution can be constructed with breather degeneration approach.By applying a mixed technique of a resonance ansatz and conjugate complexes of partial parameters to multisoliton solutions,various kinds of interactional structures are constructed;There include the soliton molecule(SM),the breather molecule(BM)and the soliton-breather molecule(SBM).Graphical investigation and theoretical analysis show that the interactions composed of SM,BM and SBM are inelastic.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two ...By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.展开更多
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit ...In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.展开更多
The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of ...The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.展开更多
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
A new (2+1)-dimensional KdV equation is constructed by using Lax pair generating technique. Exact solutions of the new equation are studied by means of the singular manifold method. Bgcklund transformation in terms...A new (2+1)-dimensional KdV equation is constructed by using Lax pair generating technique. Exact solutions of the new equation are studied by means of the singular manifold method. Bgcklund transformation in terms of the singular manifold is obtained. And localized structures are also investigated.展开更多
For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by...For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.展开更多
In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method...In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.展开更多
The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathem...The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathematical community.Thus,this paper purveys an analytical study of a generalized extended(2+1)-dimensional quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering.The Lie group theory of differential equations is utilized to compute an optimal system of one dimension for the Lie algebra of the model.We further reduce the equation using the subalgebras obtained.Besides,more general solutions of the underlying equation are secured for some special cases of n with the use of extended Jacobi function expansion technique.Consequently,we secure new bounded and unbounded solutions of interest for the equation in various solitonic structures including bright,dark,periodic(cnoidal and snoidal),compact-type as well as singular solitons.The applications of cnoidal and snoidal waves of the model in oceanography and ocean engineering for the first time,are outlined with suitable diagrams.This can be of interest to oceanographers and ocean engineers for future analysis.Furthermore,to visualize the dynamics of the results found,we present the graphic display of each of the solutions.Conclusively,we construct conservation laws of the understudy equation via the application of Noether’s theorem.展开更多
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial d...Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.展开更多
In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a...In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.展开更多
Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kau...Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps,breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.展开更多
To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kad...To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.展开更多
The propagation of waves in dispersive media,liquid flow containing gas bubbles,fluid flow in elastic tubes,oceans and gravity waves in a smaller domain,spatio-temporal rescaling of the nonlinear wave motion are delin...The propagation of waves in dispersive media,liquid flow containing gas bubbles,fluid flow in elastic tubes,oceans and gravity waves in a smaller domain,spatio-temporal rescaling of the nonlinear wave motion are delineated by the compound Korteweg-de Vries(KdV)-Burgers equation,the(2+1)-dimensional Maccari system and the generalized shallow water wave equation.In this work,we effectively derive abundant closed form wave solutions of these equations by using the double(G′/G,1/G)-expansion method.The obtained solutions include singular kink shaped soliton solutions,periodic solution,singular periodic solution,single soliton and other solutions as well.We show that the double(G′/G,1/G)-expansion method is an efficient and powerful method to examine nonlinear evolution equations(NLEEs)in mathematical physics and scientific application.展开更多
基金Supported by the National Natural Science Foundation of China(12001424)the Natural Science Basic Research Program of Shaanxi Province(2021JZ-21)the Fundamental Research Funds for the Central Universities(2020CBLY013)。
文摘Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmetric solitons upon assigning appropriate values to some parameters.Furthermore,a double-peaked lump solution can be constructed with breather degeneration approach.By applying a mixed technique of a resonance ansatz and conjugate complexes of partial parameters to multisoliton solutions,various kinds of interactional structures are constructed;There include the soliton molecule(SM),the breather molecule(BM)and the soliton-breather molecule(SBM).Graphical investigation and theoretical analysis show that the interactions composed of SM,BM and SBM are inelastic.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
文摘By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.
基金The project supported by the Natural Science Foundation of Shandong Province under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.
文摘The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
基金Supported by Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070486094
文摘A new (2+1)-dimensional KdV equation is constructed by using Lax pair generating technique. Exact solutions of the new equation are studied by means of the singular manifold method. Bgcklund transformation in terms of the singular manifold is obtained. And localized structures are also investigated.
基金supported by the National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Key Project of the Ministry of Education under Grant No.106033+3 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China(973 Program)under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education of the Ministry of Education under Grant No.20060006024
文摘For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.
基金Partially supported by the National Key Basic Research Project of China under the Grant(2004CB318000).
文摘In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.
文摘The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathematical community.Thus,this paper purveys an analytical study of a generalized extended(2+1)-dimensional quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering.The Lie group theory of differential equations is utilized to compute an optimal system of one dimension for the Lie algebra of the model.We further reduce the equation using the subalgebras obtained.Besides,more general solutions of the underlying equation are secured for some special cases of n with the use of extended Jacobi function expansion technique.Consequently,we secure new bounded and unbounded solutions of interest for the equation in various solitonic structures including bright,dark,periodic(cnoidal and snoidal),compact-type as well as singular solitons.The applications of cnoidal and snoidal waves of the model in oceanography and ocean engineering for the first time,are outlined with suitable diagrams.This can be of interest to oceanographers and ocean engineers for future analysis.Furthermore,to visualize the dynamics of the results found,we present the graphic display of each of the solutions.Conclusively,we construct conservation laws of the understudy equation via the application of Noether’s theorem.
基金Supported by the National Natural Science Foundation of China under Grant No.11171312
文摘Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.
基金Supported by the National Key Basic Research Project of China under Grant No. 2004CB318000
文摘In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.
基金supported by the National Natural Science Foundation of China (project Nos. 11371086,11671258,11975145)the Fund of Science and Technology Commission of Shanghai Municipality (project No. 13ZR1400100)the Fund of Donghua University,Institute for Nonlinear Sciences and the Fundamental Research Funds for the Central Universities。
文摘Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps,breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.
基金Project supported by the Yue-Qi Scholar of the China University of Mining and Technology(Grant No.102504180004)the 333 Project of Jiangsu Province,China(Grant No.BRA2018320)
文摘To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.
文摘The propagation of waves in dispersive media,liquid flow containing gas bubbles,fluid flow in elastic tubes,oceans and gravity waves in a smaller domain,spatio-temporal rescaling of the nonlinear wave motion are delineated by the compound Korteweg-de Vries(KdV)-Burgers equation,the(2+1)-dimensional Maccari system and the generalized shallow water wave equation.In this work,we effectively derive abundant closed form wave solutions of these equations by using the double(G′/G,1/G)-expansion method.The obtained solutions include singular kink shaped soliton solutions,periodic solution,singular periodic solution,single soliton and other solutions as well.We show that the double(G′/G,1/G)-expansion method is an efficient and powerful method to examine nonlinear evolution equations(NLEEs)in mathematical physics and scientific application.