期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
1
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional nonlinear Dispersive Boussinesq Equation BIFURCATIONS Phase Portrait Analytical Periodic wave Solution Periodic Cusp wave Solution
下载PDF
Chirped Waves for a Generalized (2 + 1)-Dimensional Nonlinear Schrdinger Equation 被引量:1
2
作者 来娴静 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期555-559,共5页
The exact chirped soliton-like and quasi-periodic wave solutions of (2 + 1)-dimensional generalized nonlinear Schr6dinger equation including linear and nonlinear gain (loss) with variable coefficients are obtaine... The exact chirped soliton-like and quasi-periodic wave solutions of (2 + 1)-dimensional generalized nonlinear Schr6dinger equation including linear and nonlinear gain (loss) with variable coefficients are obtained detalledly in this paper. The form and the behavior of solutions are strongly affected by the modulation of both the dispersion coefficient and the nonlinearity coefficient. In addition, self-similar soliton-like waves precisely piloted from our obtained solutions by tailoring the dispersion and linear gain (loss). 展开更多
关键词 2 1)-dimensional nonlinear SchrSdinger equation CHIRP ansatz method soliton-like wave solu- tion qusi-periodic wave solution
下载PDF
Bifurcation of travelling wave solutions for (2+1)-dimension nonlinear dispersive long wave equation
3
作者 RONG Ji-hong TANG Sheng-qiang School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin541004,China 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第3期291-297,共7页
In this paper,the bifurcation of solitary,kink,anti-kink,and periodic waves for (2+1)-dimension nonlinear dispersive long wave equation is studied by using the bifurcation theory of planar dynamical systems.Bifurca... In this paper,the bifurcation of solitary,kink,anti-kink,and periodic waves for (2+1)-dimension nonlinear dispersive long wave equation is studied by using the bifurcation theory of planar dynamical systems.Bifurcation parameter sets are shown,and under various parameter conditions,all exact explicit formulas of solitary travelling wave solutions and kink travelling wave solutions and periodic travelling wave solutions are listed. 展开更多
关键词 solitary wave kink and anti-kink wave periodic wave 21)-Dimension nonlinear dispersive long wave equation
下载PDF
(2+1)-dimensional dissipation nonlinear Schrdinger equatio for envelope Rossby solitary waves and chirp effect
4
作者 李近元 方念乔 +3 位作者 张吉 薛玉龙 王雪木 袁晓博 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期13-21,共9页
In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the de... In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrodinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+ 1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+ 1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. 展开更多
关键词 21)-dimensional dissipation nonlinear Schrodinger equation envelope Rossby solitary waves chirp effect two-soliton solutions
下载PDF
The exact solutions to (2+1)-dimensional nonlinear Schrdinger equation 被引量:4
5
作者 ZHANGJin-liang WANGMing-liang FANGZong-de 《原子与分子物理学报》 CAS CSCD 北大核心 2004年第1期78-82,共5页
By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit c... By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained. 展开更多
关键词 非线性薛定谔方程 精确解 行波解 孤波解 周期波解 计算物理学
下载PDF
Nonlinear dynamical wave structures of Zoomeron equation for population models 被引量:1
6
作者 Ahmet Bekir Emad H M Zahran 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期235-240,共6页
The nonlinear dynamical exact wave solutions to the non-fractional order and the time-fractional order of the biological population models are achieved for the first time in the framwork of the Paul-Painlevéappro... The nonlinear dynamical exact wave solutions to the non-fractional order and the time-fractional order of the biological population models are achieved for the first time in the framwork of the Paul-Painlevéapproach method(PPAM).When the variables appearing in the exact solutions take specific values,the solitary wave solutions will be easily obtained.The realized results prove the efficiency of this technique. 展开更多
关键词 (2+1)-dimensional non-fractional Zoomeron equation time-fractional biological population model Paul-Painlevéapproach method traveling wave solutions
下载PDF
Proposed Wave Momentum Source for Generating the 22-Year Solar Cycle
7
作者 Hans G. Mayr 《International Journal of Astronomy and Astrophysics》 2023年第2期74-88,共15页
For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear sour... For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear source term that can simulate the observations—which leaves open the question of the actual source mechanism for the solar cycle. Addressing this question, we propose to take guidance from the wave mechanism that generates the 2-year Quasi-biennial Oscillation (QBO) in the Earth atmosphere. Upward propagating gravity waves, eastward and westward, deposit momentum to generate the observed zonal wind oscillation. On the Sun, helioseismology has provided a thorough understanding of the acoustic p-waves, which propagate down into the convective envelope guided by the increasing temperature and related propagation velocity. Near the tachocline with low turbulent viscosity, the waves propagating eastward and westward can produce an axisymmetric 22-year oscillation of the zonal flow velocities that can generate the magnetic solar dynamo. Following the Earth model, waves in opposite directions can generate in the Sun wind and magnetic field oscillations in opposite directions, the proposition of a potential solar cycle mechanism. 展开更多
关键词 Dynamo models Apply Artificial nonlinearity wave Generated nonlinear Terrestrial 2-Year Oscillation model-Analogue Example Helioseismology wave Source Proposed for Solar Cycle Mechanism
下载PDF
Periodic Wave Solutions and Solitary Wave Solutions of the (2+1)-Dimensional Korteweg-de-Vries Equatio
8
作者 Liangwei He Shuanghong Chen 《American Journal of Computational Mathematics》 2021年第4期327-339,共13页
In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:"">... In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">by applying Jacobi elliptic function expansion method. Abundant types of Jacobi elliptic function solutions are obtained by choosing different </span><span style="font-size:10.0pt;font-family:"">coefficient</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10pt;font-family:""> <i>p</i>, <i>q</i> and <i>r</i> in the</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">elliptic equation. Then these solutions are</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">coupled into an auxiliary equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">and substituted into the (2+1)-dimensional KDV equation. As <span>a result,</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">a large number of complex Jacobi elliptic function solutions are ob</span><span style="font-size:10pt;font-family:"">tained, and many of them have not been found in other documents. As</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10.0pt;font-family:""><span></span></span><span style="font-size:10pt;font-family:"">, some complex solitary solutions are also obtained correspondingly.</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">These solutions that we obtained in this paper will be helpful to understand the physics of the (2+1)-dimensional KDV equation. 展开更多
关键词 nonlinear Evolution Equations Jacobi Elliptic Function (2+1)-Dimensional KDV Periodic wave Solutions Solitary wave Solu-tions
下载PDF
应用改进的简单方程法求(2+1)维ZK-MEW方程的精确解 被引量:8
9
作者 杨娟 冯庆江 《量子电子学报》 CAS CSCD 北大核心 2016年第3期287-291,共5页
应用改进的简单方程法求得(2+1)维ZK-MEW方程的精确解,包括双曲函数解、三角函数解.对双曲函数解中的参数取特殊值时,可得到孤立波解;对三角函数解中的参数取特殊值时,可得到周期波函数解.实践表明:简单方程法在光电子学、量子光学、激... 应用改进的简单方程法求得(2+1)维ZK-MEW方程的精确解,包括双曲函数解、三角函数解.对双曲函数解中的参数取特殊值时,可得到孤立波解;对三角函数解中的参数取特殊值时,可得到周期波函数解.实践表明:简单方程法在光电子学、量子光学、激光物理和等离子体物理等领域具有广泛的应用. 展开更多
关键词 非线性方程 (2+1)维ZK-MEW方程 孤立波解 周期波函数解
下载PDF
变系数(2+1)维Burgers系统的精确解及特殊孤波结构 被引量:4
10
作者 韩元春 额尔敦仓 那仁满都拉 《量子电子学报》 CAS CSCD 北大核心 2012年第3期286-291,共6页
采用映射方法研究变系数(2+1)维Burgers系统,首次得到了该系统带有任意函数的一系列显式精确解。用图形分析方法对变系数(2+1)维Burgers系统的部分孤波结构进行分析,揭示了该系统所具有的一种特殊孤波结构-平衡位置随时间变化的扭结孤... 采用映射方法研究变系数(2+1)维Burgers系统,首次得到了该系统带有任意函数的一系列显式精确解。用图形分析方法对变系数(2+1)维Burgers系统的部分孤波结构进行分析,揭示了该系统所具有的一种特殊孤波结构-平衡位置随时间变化的扭结孤立波。 展开更多
关键词 非线性物理 精确解 孤波结构 映射方法 变系数(2+1)维Burgers系统
下载PDF
(2+1)维AKNS方程的对称约化和新的非行波精确解 被引量:5
11
作者 康晓蓉 鲜大权 《量子电子学报》 CAS CSCD 北大核心 2013年第6期678-683,共6页
利用Lie群方法将(2+1)维AKNS方程约化成(1+1)维非线性偏微分方程。对约化方程应用扩展同宿测试法获得了AKNS方程的一些新的非行波精确解,这些结果丰富了该方程的可积性内涵及(2+1)维非线性波传播的动力学行为。
关键词 非线性方程 (2+1)维AKNS方程 Lie群方法 扩展同宿测试法 非行波精确解
下载PDF
(2+1)维BBM方程的精确解 被引量:5
12
作者 夏莉 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期40-42,共3页
通过行波约化一类(2+1)维非线性波动方程和建立与立方非线性Klein-Gordon方程间变换的联系,由此得到其精确解和孤立波解.
关键词 (2+1)维非线性波动方程 非线性KLEIN-GORDON方程 精确解 孤波解
下载PDF
应用Riccati-Bernoulli辅助方程求解广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程 被引量:7
13
作者 石兰芳 王明灿 钱正雅 《应用数学和力学》 CSCD 北大核心 2020年第7期786-795,共10页
研究了Riccati-Bernoulli辅助方程法,并应用这种方法得到广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程的精确行波解.这些解包括有理函数、三角函数、双曲函数和指数函数.应用这种方法求解过程简洁有效.该研究对于数学... 研究了Riccati-Bernoulli辅助方程法,并应用这种方法得到广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程的精确行波解.这些解包括有理函数、三角函数、双曲函数和指数函数.应用这种方法求解过程简洁有效.该研究对于数学物理方程领域诸多非线性偏微分方程精确解的探究具有重要的意义. 展开更多
关键词 Riccati-Bernoulli辅助方程法 广义非线性Schrodinger方程 (2+1)维非线性Ginzburg-Landau方程 行波解
下载PDF
(2+1)维非线性薛定谔方程的怪波解 被引量:2
14
作者 程丽 张翼 《长江大学学报(自科版)(上旬)》 2016年第3期35-39,4,共5页
应用Hirota双线性算子方法得到(2+1)维非线性薛定谔方程的周期解和其极限解,利用sato算子理论把(1+1)维非线性薛定谔方程的Grammian解转化为(2+1)维非线性薛定谔方程非奇异的有理解,从而得到(2+1)维非线性薛定谔方程的一阶和高阶怪波解... 应用Hirota双线性算子方法得到(2+1)维非线性薛定谔方程的周期解和其极限解,利用sato算子理论把(1+1)维非线性薛定谔方程的Grammian解转化为(2+1)维非线性薛定谔方程非奇异的有理解,从而得到(2+1)维非线性薛定谔方程的一阶和高阶怪波解。研究结果说明了高维的非线性薛定谔方程具有有理分式的怪波解,这些方法同样适用于其他的高维薛定谔型方程,如Mel’nikov方程、Fokas系统等。 展开更多
关键词 (2+1)维非线性薛定谔方程 HIROTA双线性方法 周期解 怪波解
下载PDF
(2+1)维非线性薛定谔方程的线畸形波及其传播特性
15
作者 楼吉辉 胡文成 +1 位作者 赵辟 张解放 《商丘师范学院学报》 CAS 2013年第6期34-38,共5页
采用一个通用的理论,即用相似变换的方法,研究构建了(2+1)维非线性薛定谔方程的精确畸形波解,并进一步讨论了一阶、二阶光学畸形波的传输特性,我们提出的线畸形波概念在理论和应用方面都具有启迪价值.
关键词 (2+1)维 非线性薛定谔方程 相似变换 线畸形波
下载PDF
2+1维非线性KDV方程组的单行波解分类
16
作者 代冬岩 朱桂英 李艳凤 《黑龙江八一农垦大学学报》 2017年第4期133-136,共4页
应用多项式的完全判别系统,以分类的形式给出2+1维非线性KDV方程组的单行波解,这个方法能够获得方程组的全部精确解,其中一部分是新解。同时通过赋予方程中参数具体数值,构造出单行波解的具体结构和波形图。
关键词 多项式完全判别系统 2+1维非线性KDV方程组 单行波解
下载PDF
Reduced Differential Transform Method for Solving Nonlinear Biomathematics Models 被引量:4
17
作者 K.A.Gepreel A.M.S.Mahdy +1 位作者 M.S.Mohamed A.Al-Amiri 《Computers, Materials & Continua》 SCIE EI 2019年第9期979-994,共16页
In this paper,we study the approximate solutions for some of nonlinear Biomathematics models via the e-epidemic SI1I2R model characterizing the spread of viruses in a computer network and SIR childhood disease model.T... In this paper,we study the approximate solutions for some of nonlinear Biomathematics models via the e-epidemic SI1I2R model characterizing the spread of viruses in a computer network and SIR childhood disease model.The reduced differential transforms method(RDTM)is one of the interesting methods for finding the approximate solutions for nonlinear problems.We apply the RDTM to discuss the analytic approximate solutions to the SI1I2R model for the spread of virus HCV-subtype and SIR childhood disease model.We discuss the numerical results at some special values of parameters in the approximate solutions.We use the computer software package such as Mathematical to find more iteration when calculating the approximate solutions.Graphical results and discussed quantitatively are presented to illustrate behavior of the obtained approximate solutions. 展开更多
关键词 Reduced differential transforms method nonlinear biomathematics models SI1I2R model SIR model analytic approximate solutions qualitative analysis stability and equilibrium.
下载PDF
A Numerical Algorithm Based on Quadratic Finite Element for Two-Dimensional Nonlinear Time Fractional Thermal Diffusion Model 被引量:3
18
作者 Yanlong Zhang Baoli Yin +2 位作者 Yue Cao Yang Liu Hong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1081-1098,共18页
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d... In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results. 展开更多
关键词 Quadratic finite element two-dimensional nonlinear time fractional thermal diffusion model L2-1formula.
下载PDF
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
19
作者 张解放 金美贞 +2 位作者 何纪达 楼吉辉 戴朝卿 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期330-334,共5页
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr6dinger equation with varying coefficients. And then the dynamics of the first- and the second-order optica... We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr6dinger equation with varying coefficients. And then the dynamics of the first- and the second-order optical rogues are investigated. Finally, the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed. By properly choosing the distributed coefficients, we demonstrate analytically that rogue waves can be restrained or even be annihilated, or emerge periodically and sustain forever. We also figure out the center-of-mass motion of the rogue waves. 展开更多
关键词 rogue wave 2 1)-dimensional nonlinear Schrodinger equation inhomogeneous nonlinear waveg-uides
下载PDF
New Compacton-Like and Solitary Pattern-Like Solutions of (2+1)-Dimensional Generalization of Modified KdV Equation
20
作者 CHEN Yong YAN Zhen-Ya 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第5X期789-792,共4页
Recently some (1+1)-dimensional nonlinear wave equations with linearly dispersive terms were shown to possess compacton-like and solitary pattern-like solutions. In this paper, with the aid of Maple, new solutions of ... Recently some (1+1)-dimensional nonlinear wave equations with linearly dispersive terms were shown to possess compacton-like and solitary pattern-like solutions. In this paper, with the aid of Maple, new solutions of (2+1)-dimensional generalization of mKd V equation, which is of only linearly dispersive terms, are investigated using three new transformations. As a consequence, it is shown that this (2+ 1)-dimensional equation also possesses new compacton-like solutions and solitary pattern-like solutions. 展开更多
关键词 21)-dimensional nonlinear wave equation comptacton-like solution solitary pattern-like solution
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部