The quantum hydrodynamic model for ion-acoustic waves in plasmas is studied.First,we design a new disturbance expansion to describe the ion fluid velocity and electric field potential.It should be emphasized that the ...The quantum hydrodynamic model for ion-acoustic waves in plasmas is studied.First,we design a new disturbance expansion to describe the ion fluid velocity and electric field potential.It should be emphasized that the piecewise function perturbation form is new with great difference from the previous perturbation.Then,based on the piecewise function perturbation,a(3+1)-dimensional generalized modified Korteweg–de Vries Zakharov–Kuznetsov(mKdV-ZK)equation is derived for the first time,which is an extended form of the classical mKdV equation and the ZK equation.The(3+1)-dimensional generalized time-space fractional mKdV-ZK equation is constructed using the semi-inverse method and the fractional variational principle.Obviously,it is more accurate to depict some complex plasma processes and phenomena.Further,the conservation laws of the generalized time-space fractional mKdV-ZK equation are discussed.Finally,using the multi-exponential function method,the non-resonant multiwave solutions are constructed,and the characteristics of ion-acoustic waves are well described.展开更多
Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integ...Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11975143)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MA017)+1 种基金the Taishan Scholars Program of Shandong Province,China(Grant No.ts20190936)the Shandong University of Science and Technology Research Fund(Grant No.2015TDJH102).
文摘The quantum hydrodynamic model for ion-acoustic waves in plasmas is studied.First,we design a new disturbance expansion to describe the ion fluid velocity and electric field potential.It should be emphasized that the piecewise function perturbation form is new with great difference from the previous perturbation.Then,based on the piecewise function perturbation,a(3+1)-dimensional generalized modified Korteweg–de Vries Zakharov–Kuznetsov(mKdV-ZK)equation is derived for the first time,which is an extended form of the classical mKdV equation and the ZK equation.The(3+1)-dimensional generalized time-space fractional mKdV-ZK equation is constructed using the semi-inverse method and the fractional variational principle.Obviously,it is more accurate to depict some complex plasma processes and phenomena.Further,the conservation laws of the generalized time-space fractional mKdV-ZK equation are discussed.Finally,using the multi-exponential function method,the non-resonant multiwave solutions are constructed,and the characteristics of ion-acoustic waves are well described.
文摘Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.