In the present paper,new analytical solutions for the space-time fractional Boussinesq and(2+1)-dimensional breaking soliton equations are obtained by using the simplified tan(φ(ξ)2)-expansion method.Here,fractional...In the present paper,new analytical solutions for the space-time fractional Boussinesq and(2+1)-dimensional breaking soliton equations are obtained by using the simplified tan(φ(ξ)2)-expansion method.Here,fractional derivatives are defined in the conformable sense.To show the correctness of the obtained traveling wave solutions,residual error function is defined.It is observed that the new solutions are very close to the exact solutions.The solutions obtained by the presented method have not been reported in former literature.展开更多
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m...This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.展开更多
文摘In the present paper,new analytical solutions for the space-time fractional Boussinesq and(2+1)-dimensional breaking soliton equations are obtained by using the simplified tan(φ(ξ)2)-expansion method.Here,fractional derivatives are defined in the conformable sense.To show the correctness of the obtained traveling wave solutions,residual error function is defined.It is observed that the new solutions are very close to the exact solutions.The solutions obtained by the presented method have not been reported in former literature.
文摘This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.