To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me...To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.展开更多
This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that a...This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that adding antioxidants helps improve the dispersion among magnetic powders,leading to a 33.3%decrease in jet milling time and a 15.8%increase in magnet powder production yield.Additionally,adding antioxidants enhances the oxidation resistance of the magnetic powders.After being stored in a constant temperature air environment at 25C for 48 h,the O content in the powder decreased by 33%compared to samples without antioxidants.While in the magnet body,the O content decreased from 0.21 wt.%to 0.14 wt.%,which helps increase the effective Sm content and domain wall pinning uniformity in the magnet.Excellent magnetic properties were obtained in the magnet with added antioxidants:B_(r)=11.6 kGs,SF=79.6%,H_(cj)=16.8 kOe,and(BH)_(max)=32.5 MGOe.展开更多
Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not bee...Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not been well documented in terms of conventional milling by-product streams.In this study,multiple analytical methods were used to investigate antioxidant activity and phenolic compound compositions of hard red winter wheat(whole ground wheat),the parts of a wheat kernel(bran,flour,germ),and wheat by-product streams(mill feed,red dog,shorts)for the first time.For each mill stream,phenolic compounds(total,flavonoid,and anthocyanin contents)were determined and antioxidant activities were evaluated with 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical-scavenging activity,ferric reducing/antioxidant power(FRAP),and total antioxidant capacity assays.Significant differences(P<0.05)were observed in phenolic concentrations among fractions of bran,flour,and germ milled from the same kernels and noted that germ accounts for the majority of antioxidant properties,whereas bran contains a substantial portion of phenolic compounds and anthocyanins.Mill feed was high in phenolic content(5.29 mg FAE/g),total antioxidant capacity(866 mg/g),and antioxidant activity(up to 75% DPPH inhibition and 20.26μmol FeSO_(4)/g).The comprehensive information on distribution of antioxidants and phenolic compounds provides insights for future human consumption of commonly produced co-products from flour milling,and for selecting and using different milling fractions to make foods with improved nutritional properties.展开更多
The determination of synthetic phenolic antioxidants (SPAs) including propyl gallate (PG), tertiary butyl hydroquinone (TI3HQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food items...The determination of synthetic phenolic antioxidants (SPAs) including propyl gallate (PG), tertiary butyl hydroquinone (TI3HQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food items is reported using high performance liquid chromatography (HPLC). A Cls column is used as the stationary phase, acetonltrile and water:Acetic acid (1%) is used as the mobile phase of gradient elution and the UV detec- tor is set at 280 nm. Under the above conditions, four antioxidents is completely separated within 8 rain. The limit of detection, linear range, and reproducibility of HPLC are evaluated. Isolation parameters of SPAs from different types of food items (cooking oil, margarine and butter, and cheese) are optimized. SPAs are extracted from food items through extraction with methanol/acetonitrile (1 : 1, in volume), vortex, ultrasonic treatment and precipitation in a freezer (2 h). For cooking oil margarine, butter and cheese at 50 and 200 rag/L, recoveries of SPAs are 93.3%0--108.3% (PG), 85.3~^--108.3~~ (TBHQ), 96.7~^--101.2~/6 (BHA), and 73.9^-- 94.6% (BHT). The method is applied to the determination of SPAs in 38 food items (16 cooking oils, 8 mar- garine, 6 butter and 6 cheese samples). The levels of SPAs in positive samples are all below the legal limits of China.展开更多
The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theo...The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O-H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.展开更多
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s...Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.展开更多
Objective:To evaluate the phytochemical constituents and antioxidant activities of aqueous extract of Scholia latifolia(S.latifolia)bark locally used for the treatment of oxidative stress-induced ailments in South Afr...Objective:To evaluate the phytochemical constituents and antioxidant activities of aqueous extract of Scholia latifolia(S.latifolia)bark locally used for the treatment of oxidative stress-induced ailments in South Africa.Methods:The antioxidant and free radical scavenging activity of aqueous extract of the plant was assessed against 1,1-diphenyl-2-pierylhydrazyl(DPPH),nitric oxide(NO),2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt(ABTS)and the ferric reducing agent.Total phenolics,flavonoids,flavonols and proanthocyanidins were also determined to assess their corresponding effect on the antioxidant activity of this plant.Results:The activities of plant extract against DPPH,ABTS and NO radicals were concentration dependent with IC_(50)value of 0.06,0.05 and 0.05 mg/mL,respectively.The reducing power of the extract was greater than that of butylated hydroxyl toluene(BHT)and ascorbic acid which were used as standard drugs in a concentration dependent manner.The total phenolics content of the aqueous bark extract was(193.33±0.03 TE/g),followed by flavonoids(72.70±0.01 QE/g),proanthocyanidins|48.76±0.00 CE/g)and flavonols(47.76±0.21 QE/g).Phytochemical analysis revealed the presence of percentage tannin(11.40±0.02),alkaloid(9.80±0.01),steroids(18.20±0.01),glycosides(29.80±0.01)and saponins(6.80±0.00).The results exhibited a positive linear correlation between these polyphenols and the free radical scavenging activities.Conclusions:Our findings provide evidence that the crude aqueous extract of S.latifolia is a potential source of natural antioxidants and this justifies its uses in folkloric medicines.展开更多
Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide.The metabolism of ethanol generates reactive oxygen species,which play a significant role in the deterio-ration of alcoholic l...Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide.The metabolism of ethanol generates reactive oxygen species,which play a significant role in the deterio-ration of alcoholic liver disease(ALD).Antioxidant phytochemicals,such as polyphenols,regulate the expression of ALD-associated proteins and peptides,namely,catalase,superoxide dismutase,glutathione,glutathione peroxidase,and glutathione reductase.These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1--NF--E2--related factor--2 pathway and antioxidant responsive elements.Furthermore,these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines.These phenomena are likely induced via the regulation of mitogen--activating protein kinase(MAPK)pathways by plant antioxidants,similar to preconditioning in ischemia-reperfusion models.Although the relationship between plant antioxidants and ALD has not been adequately investigated,plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.展开更多
Diabetes mellitus can damage the eyes,kidneys,nerves and heart.Microvascular and macrovascular disorders are the leading causes of morbidity and mortality in diabetic patients.Hyperglycemia can increase the indicators...Diabetes mellitus can damage the eyes,kidneys,nerves and heart.Microvascular and macrovascular disorders are the leading causes of morbidity and mortality in diabetic patients.Hyperglycemia can increase the indicators of lipid peroxidation and oxidative stress in which free radicals have the main role in the pathogenesis of these complications.Therefore,antioxidants which combat oxidative stress should be able to prevent and repair free radicals induced damages.Although free radicals contribute to kidney damage,atherosclerosis,diabetes,heart disease,nephrotoxicity and hepatotoxicity; however,clinical trials do not uniquely confirm a substantial impact on diabetic damage.It seems that antioxidants in vegetables,fruits and grains help preventing diabetes complications; however,there is little evidence that taking single antioxidants such as vitamin E or vitamin C protect these complications.The findings about combination antioxidants are also complicated and not entirely clear.In this review paper we tried to present the role of oxidative stress on microvascular complications of type2 diabetes mellitus.Other objective of this paper is to review the new findings about the role of various antioxidants on prevention and treatment of diabetes mellitus as well as its complications including retinopathy,nephropathy and neuropathy.展开更多
Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,app...Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,appear to contribute importantly to the pathogenesis of HCC. Both are associated with oxidative stress,which can damage cellular molecules like lipids,proteins,and DNA during chronic infection. Chronic alcohol use is another important factor that contributes to oxidative stress in the liver. Previous studies reported that treatment with antioxidants,such as curcumin,silymarin,green tea,and vitamins C and E,can protect DNA from damage and regulate liver pathogenesis-related cascades by reducing reactive oxygen species. This review summarizes some of the relationships between oxidative stress and liver pathogenesis,focusing upon HBV and alcohol,and suggests antioxidant therapeutic approaches.展开更多
Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective si...Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective single-center non-randomized controlled clinical trial performed in the China Rehabilitation Research Center, we analyzed the relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke. Patients during rehabilitation of stroke were recruited and assigned to the insomnia group or non-insomnia group. Simultaneously, persons without stroke or insomnia served as normal controls. Each group contained 25 cases. The primary outcome was nocturnal concentrations of melatonin, GABA and total antioxidants in peripheral blood. The secondary outcomes were Pittsburgh Sleep Quality Index, Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Morningness-Eveningness Questionnaire(Chinese version), and National Institute of Health Stroke Scale. The relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke was analyzed and showed that they were lower in the insomnia group than in the non-insomnia group. The severity of stroke was higher in the insomnia group than in the non-insomnia group. Correlation analysis demonstrated that the nocturnal concentrations of melatonin and GABA were associated with insomnia after stroke. This trial was registered at Clinical Trials.gov, identifier: NCT03202121.展开更多
Objective:To evaluate the anti-apoptotic and radical scavenging activities of dietary phenolics, namely ascorbic acid,a-tocopherol acetate,citric acid,salicylic acid,and estimate H_2O_2induced apoptosis in renal cell ...Objective:To evaluate the anti-apoptotic and radical scavenging activities of dietary phenolics, namely ascorbic acid,a-tocopherol acetate,citric acid,salicylic acid,and estimate H_2O_2induced apoptosis in renal cell carcinoma cells.Methods:The intracellular antioxidant potency of antioxidants was investigated.H_2O-2-induced apoptosis in RCC-26 was assayed with the following parameters:cell viability(%apoptosis),nucleosomal damage and DNA fragmentation, bcl-2 levels and flow cytometery analysis(ROS production evaluation).Results:Ine anticancer properties of antioxidants such as ascorbic acid,a- tocopherol acetate,citric acid,salicylic acid with perdurable responses were investigated.It was observed that these antioxidants had protective effect(anti-apoptotic activity) against hydrogen peroxide(H_2O_2) in renal cell carcinoma(RCC-26) cell line.Conclusions:This study reveals and proves the anticancer properties.However,in cancer cell lines anti-apoptotic activity can indirectly reflect the cancer promoter activity through radicals scavenging,and significantly protect nucleus and bcl-2.展开更多
Objective:To study the antioxidant efficacy of Commiphora mukul(C.mukul) gum resin ethanolic extract in streptozotocin(STZ) induced diabetic rats.Methods:The male Wistar albino rats were randomly divided into four gro...Objective:To study the antioxidant efficacy of Commiphora mukul(C.mukul) gum resin ethanolic extract in streptozotocin(STZ) induced diabetic rats.Methods:The male Wistar albino rats were randomly divided into four groups of eight animals each:Control group(C),CM-treated control group(C_+CMEE),Diabetic control group(D),CM- treated diabetic group(D_+CMEE).Diabetes was induced by intraperitoneal injection of STZ(55 mg/kg/ bwt).After being confirmed the diabetic rats were treated with C.mukul gum resin ethanolic extract(CMEE) for 60 days.The biochemical estimations like antioxidant,oxidative stress marker enzymes and hepatic marker enzymes of tissues were performed.Results:The diabetic rats showed increased level of enzymatic activities aspartate aminotransaminase(AST),alanine aminotransaminase(ALT) in liver and kidney and oxidative markers like lipid peroxidation(LPO) and protein oxidation(PO) in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control group.Administration of CMEE(200 mg/kg bw) to diabetic rats for 60 days significantly reversed the above parameters towards normalcy.Conclusions:In conclusion,our data indicate the preventive role of C.mukul against STZ-induced diabetic oxidative stress;hence this plant could be used as an adjuvant therapy for the prevention and/or management of diabetes and aggravated antioxidant status.展开更多
The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases(MMPs). Degradation of extracellular matrix(ECM) proteins like collagen, proteog...The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases(MMPs). Degradation of extracellular matrix(ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metallopro-teinase(TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK(reversion including cysteinerich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2,-9 and-14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species(ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is associated with a lower cancer incidence. Evidence indicates that some antioxidants inhibit the growth of malignant cells by inducing apoptosis and inhibiting the activity of MMPs. This review is discussed in six subchapters, as follows.展开更多
We have read with interest the paper published in issue 2, volume 16 of World Journal of Gastroenterology 2010 by Nakamura et al, demonstrating that the antioxidant resveratrol (RVT) enhances hepatitis C virus (HCV) r...We have read with interest the paper published in issue 2, volume 16 of World Journal of Gastroenterology 2010 by Nakamura et al, demonstrating that the antioxidant resveratrol (RVT) enhances hepatitis C virus (HCV) replication, consequently, they conclude that RVT is not a suitable antioxidant therapy for HCV chronic infection. The data raise some concern regarding the use of complementary and alternative medicine since the most frequent supplements taken by these patients are antioxidants or agents that may be beneficial for different chronic liver diseases. A recent study by Vidali et al on oxidative stress and steatosis in the progression of chronic hepatitis C concludes that oxidative stress and insulin resistance contribute to steatosis, thus accelerating the progression of fibrosis. We are particularly interested in investigating how the oxidative and nitrosative stress mechanisms are involved in the pathogenesis of different chronic liver diseases.展开更多
文摘To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.
基金the National Key R&D Program of China(Grant No.2021YFB3803003)the Youth Innova-tion Promotion Association of Chinese Academy of Sciences(Grant No.2023311)+1 种基金Zhejiang Public Welfare Technology Application Research Project(Grant No.LGG22E010013)Class III Peak Discipline of Shanghai-Materials Science and Engineering(High-Energy Beam Intelligent Processing and Green Manufacturing).
文摘This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that adding antioxidants helps improve the dispersion among magnetic powders,leading to a 33.3%decrease in jet milling time and a 15.8%increase in magnet powder production yield.Additionally,adding antioxidants enhances the oxidation resistance of the magnetic powders.After being stored in a constant temperature air environment at 25C for 48 h,the O content in the powder decreased by 33%compared to samples without antioxidants.While in the magnet body,the O content decreased from 0.21 wt.%to 0.14 wt.%,which helps increase the effective Sm content and domain wall pinning uniformity in the magnet.Excellent magnetic properties were obtained in the magnet with added antioxidants:B_(r)=11.6 kGs,SF=79.6%,H_(cj)=16.8 kOe,and(BH)_(max)=32.5 MGOe.
基金Support for this student's (Lauren Brewer) training project is provided by USDA National Needs Graduate Fellowship Competitive Grant No. 2008-38420-04773 from the National Institute of Food and Agriculturenumber 12-473-J from the Kansas Agricultural Experiment Stationfinancially supported by Mahasarakham University.
文摘Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not been well documented in terms of conventional milling by-product streams.In this study,multiple analytical methods were used to investigate antioxidant activity and phenolic compound compositions of hard red winter wheat(whole ground wheat),the parts of a wheat kernel(bran,flour,germ),and wheat by-product streams(mill feed,red dog,shorts)for the first time.For each mill stream,phenolic compounds(total,flavonoid,and anthocyanin contents)were determined and antioxidant activities were evaluated with 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical-scavenging activity,ferric reducing/antioxidant power(FRAP),and total antioxidant capacity assays.Significant differences(P<0.05)were observed in phenolic concentrations among fractions of bran,flour,and germ milled from the same kernels and noted that germ accounts for the majority of antioxidant properties,whereas bran contains a substantial portion of phenolic compounds and anthocyanins.Mill feed was high in phenolic content(5.29 mg FAE/g),total antioxidant capacity(866 mg/g),and antioxidant activity(up to 75% DPPH inhibition and 20.26μmol FeSO_(4)/g).The comprehensive information on distribution of antioxidants and phenolic compounds provides insights for future human consumption of commonly produced co-products from flour milling,and for selecting and using different milling fractions to make foods with improved nutritional properties.
文摘The determination of synthetic phenolic antioxidants (SPAs) including propyl gallate (PG), tertiary butyl hydroquinone (TI3HQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food items is reported using high performance liquid chromatography (HPLC). A Cls column is used as the stationary phase, acetonltrile and water:Acetic acid (1%) is used as the mobile phase of gradient elution and the UV detec- tor is set at 280 nm. Under the above conditions, four antioxidents is completely separated within 8 rain. The limit of detection, linear range, and reproducibility of HPLC are evaluated. Isolation parameters of SPAs from different types of food items (cooking oil, margarine and butter, and cheese) are optimized. SPAs are extracted from food items through extraction with methanol/acetonitrile (1 : 1, in volume), vortex, ultrasonic treatment and precipitation in a freezer (2 h). For cooking oil margarine, butter and cheese at 50 and 200 rag/L, recoveries of SPAs are 93.3%0--108.3% (PG), 85.3~^--108.3~~ (TBHQ), 96.7~^--101.2~/6 (BHA), and 73.9^-- 94.6% (BHT). The method is applied to the determination of SPAs in 38 food items (16 cooking oils, 8 mar- garine, 6 butter and 6 cheese samples). The levels of SPAs in positive samples are all below the legal limits of China.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20902056 and No.20973108), the Innovation Foundation of Shanghai University, and the Leading Academic Discipline Project of Shanghai Municipal Education Commission (No.J50101).
文摘The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O-H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.
基金supported by the Key Research Projects of Universities of Henan Province,No.21A320064 (to XS)the National Key Research and Development Program of China,No.2021YFA1201504 (to LZ)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Science,No.XDB36000000 (to CW)the National Natural Science Foundation of China,Nos.31971295,12374406 (both to LZ)。
文摘Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.
基金supported by Govan Mbeki Research Development Centre of the University of Fort Hare
文摘Objective:To evaluate the phytochemical constituents and antioxidant activities of aqueous extract of Scholia latifolia(S.latifolia)bark locally used for the treatment of oxidative stress-induced ailments in South Africa.Methods:The antioxidant and free radical scavenging activity of aqueous extract of the plant was assessed against 1,1-diphenyl-2-pierylhydrazyl(DPPH),nitric oxide(NO),2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt(ABTS)and the ferric reducing agent.Total phenolics,flavonoids,flavonols and proanthocyanidins were also determined to assess their corresponding effect on the antioxidant activity of this plant.Results:The activities of plant extract against DPPH,ABTS and NO radicals were concentration dependent with IC_(50)value of 0.06,0.05 and 0.05 mg/mL,respectively.The reducing power of the extract was greater than that of butylated hydroxyl toluene(BHT)and ascorbic acid which were used as standard drugs in a concentration dependent manner.The total phenolics content of the aqueous bark extract was(193.33±0.03 TE/g),followed by flavonoids(72.70±0.01 QE/g),proanthocyanidins|48.76±0.00 CE/g)and flavonols(47.76±0.21 QE/g).Phytochemical analysis revealed the presence of percentage tannin(11.40±0.02),alkaloid(9.80±0.01),steroids(18.20±0.01),glycosides(29.80±0.01)and saponins(6.80±0.00).The results exhibited a positive linear correlation between these polyphenols and the free radical scavenging activities.Conclusions:Our findings provide evidence that the crude aqueous extract of S.latifolia is a potential source of natural antioxidants and this justifies its uses in folkloric medicines.
基金Supported by JSPS KAKENHI Grant Number 25450196grants-in-aid from The Ministry of Agriculture,Forestry and Fisheries of Japan
文摘Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide.The metabolism of ethanol generates reactive oxygen species,which play a significant role in the deterio-ration of alcoholic liver disease(ALD).Antioxidant phytochemicals,such as polyphenols,regulate the expression of ALD-associated proteins and peptides,namely,catalase,superoxide dismutase,glutathione,glutathione peroxidase,and glutathione reductase.These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1--NF--E2--related factor--2 pathway and antioxidant responsive elements.Furthermore,these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines.These phenomena are likely induced via the regulation of mitogen--activating protein kinase(MAPK)pathways by plant antioxidants,similar to preconditioning in ischemia-reperfusion models.Although the relationship between plant antioxidants and ALD has not been adequately investigated,plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.
文摘Diabetes mellitus can damage the eyes,kidneys,nerves and heart.Microvascular and macrovascular disorders are the leading causes of morbidity and mortality in diabetic patients.Hyperglycemia can increase the indicators of lipid peroxidation and oxidative stress in which free radicals have the main role in the pathogenesis of these complications.Therefore,antioxidants which combat oxidative stress should be able to prevent and repair free radicals induced damages.Although free radicals contribute to kidney damage,atherosclerosis,diabetes,heart disease,nephrotoxicity and hepatotoxicity; however,clinical trials do not uniquely confirm a substantial impact on diabetic damage.It seems that antioxidants in vegetables,fruits and grains help preventing diabetes complications; however,there is little evidence that taking single antioxidants such as vitamin E or vitamin C protect these complications.The findings about combination antioxidants are also complicated and not entirely clear.In this review paper we tried to present the role of oxidative stress on microvascular complications of type2 diabetes mellitus.Other objective of this paper is to review the new findings about the role of various antioxidants on prevention and treatment of diabetes mellitus as well as its complications including retinopathy,nephropathy and neuropathy.
基金Supported by The 21st Century Frontier Program in the Functional Human Genome Project, No. HGM0200934the International Collaboration Program of Science and Technology, No. FGM0600914the Ministry of Education, Science and Technology, and the KRIBB Research Initiative Program Grant, No. KGM3320911, South Korea
文摘Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,appear to contribute importantly to the pathogenesis of HCC. Both are associated with oxidative stress,which can damage cellular molecules like lipids,proteins,and DNA during chronic infection. Chronic alcohol use is another important factor that contributes to oxidative stress in the liver. Previous studies reported that treatment with antioxidants,such as curcumin,silymarin,green tea,and vitamins C and E,can protect DNA from damage and regulate liver pathogenesis-related cascades by reducing reactive oxygen species. This review summarizes some of the relationships between oxidative stress and liver pathogenesis,focusing upon HBV and alcohol,and suggests antioxidant therapeutic approaches.
基金supported by the Optional Research Project of China Rehabilitation Research Center,No.2014-7the Sub-Project under National“Twelfth Five-Year”Plan for Science&Technology Support Project,No.2011BAI08B11
文摘Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective single-center non-randomized controlled clinical trial performed in the China Rehabilitation Research Center, we analyzed the relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke. Patients during rehabilitation of stroke were recruited and assigned to the insomnia group or non-insomnia group. Simultaneously, persons without stroke or insomnia served as normal controls. Each group contained 25 cases. The primary outcome was nocturnal concentrations of melatonin, GABA and total antioxidants in peripheral blood. The secondary outcomes were Pittsburgh Sleep Quality Index, Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Morningness-Eveningness Questionnaire(Chinese version), and National Institute of Health Stroke Scale. The relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke was analyzed and showed that they were lower in the insomnia group than in the non-insomnia group. The severity of stroke was higher in the insomnia group than in the non-insomnia group. Correlation analysis demonstrated that the nocturnal concentrations of melatonin and GABA were associated with insomnia after stroke. This trial was registered at Clinical Trials.gov, identifier: NCT03202121.
基金Supported by All India Council for Technical Education
文摘Objective:To evaluate the anti-apoptotic and radical scavenging activities of dietary phenolics, namely ascorbic acid,a-tocopherol acetate,citric acid,salicylic acid,and estimate H_2O_2induced apoptosis in renal cell carcinoma cells.Methods:The intracellular antioxidant potency of antioxidants was investigated.H_2O-2-induced apoptosis in RCC-26 was assayed with the following parameters:cell viability(%apoptosis),nucleosomal damage and DNA fragmentation, bcl-2 levels and flow cytometery analysis(ROS production evaluation).Results:Ine anticancer properties of antioxidants such as ascorbic acid,a- tocopherol acetate,citric acid,salicylic acid with perdurable responses were investigated.It was observed that these antioxidants had protective effect(anti-apoptotic activity) against hydrogen peroxide(H_2O_2) in renal cell carcinoma(RCC-26) cell line.Conclusions:This study reveals and proves the anticancer properties.However,in cancer cell lines anti-apoptotic activity can indirectly reflect the cancer promoter activity through radicals scavenging,and significantly protect nucleus and bcl-2.
基金financially supported by Sri Venkateswara University(Grant No.BC-408)
文摘Objective:To study the antioxidant efficacy of Commiphora mukul(C.mukul) gum resin ethanolic extract in streptozotocin(STZ) induced diabetic rats.Methods:The male Wistar albino rats were randomly divided into four groups of eight animals each:Control group(C),CM-treated control group(C_+CMEE),Diabetic control group(D),CM- treated diabetic group(D_+CMEE).Diabetes was induced by intraperitoneal injection of STZ(55 mg/kg/ bwt).After being confirmed the diabetic rats were treated with C.mukul gum resin ethanolic extract(CMEE) for 60 days.The biochemical estimations like antioxidant,oxidative stress marker enzymes and hepatic marker enzymes of tissues were performed.Results:The diabetic rats showed increased level of enzymatic activities aspartate aminotransaminase(AST),alanine aminotransaminase(ALT) in liver and kidney and oxidative markers like lipid peroxidation(LPO) and protein oxidation(PO) in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control group.Administration of CMEE(200 mg/kg bw) to diabetic rats for 60 days significantly reversed the above parameters towards normalcy.Conclusions:In conclusion,our data indicate the preventive role of C.mukul against STZ-induced diabetic oxidative stress;hence this plant could be used as an adjuvant therapy for the prevention and/or management of diabetes and aggravated antioxidant status.
基金Supported by Council of Scientific and Industrial Research,India(CSIR)-INDEPTH and HUM projects
文摘The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases(MMPs). Degradation of extracellular matrix(ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metallopro-teinase(TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK(reversion including cysteinerich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2,-9 and-14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species(ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is associated with a lower cancer incidence. Evidence indicates that some antioxidants inhibit the growth of malignant cells by inducing apoptosis and inhibiting the activity of MMPs. This review is discussed in six subchapters, as follows.
基金Supported by University Hospital La Princesa,Mutua Madrilea Foundation,Spain
文摘We have read with interest the paper published in issue 2, volume 16 of World Journal of Gastroenterology 2010 by Nakamura et al, demonstrating that the antioxidant resveratrol (RVT) enhances hepatitis C virus (HCV) replication, consequently, they conclude that RVT is not a suitable antioxidant therapy for HCV chronic infection. The data raise some concern regarding the use of complementary and alternative medicine since the most frequent supplements taken by these patients are antioxidants or agents that may be beneficial for different chronic liver diseases. A recent study by Vidali et al on oxidative stress and steatosis in the progression of chronic hepatitis C concludes that oxidative stress and insulin resistance contribute to steatosis, thus accelerating the progression of fibrosis. We are particularly interested in investigating how the oxidative and nitrosative stress mechanisms are involved in the pathogenesis of different chronic liver diseases.