We investigate a quantum communication protocol, of so-called approximate quantum state sharing (AQSS), that protocol is basically based on pair of private quantum channels. In this paper, we prove that the scheme is ...We investigate a quantum communication protocol, of so-called approximate quantum state sharing (AQSS), that protocol is basically based on pair of private quantum channels. In this paper, we prove that the scheme is secure against any external and internal attacks of wiretapping in principle. Although the protocol leaks small amount of information corresponding to a security parameter , the scheme still preserves its information-theoretic security.展开更多
The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks...The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks and the quantum channel capacity problems. In this paper, we primally introduce a notion of approximate private quantum channel (<em>ε</em>-PQC) on <em>fermionic</em> Gaussian systems (<em>i.e.</em>, <em>ε</em>-FPQC), and construct its explicit form of the fermionic (Gaussian) private quantum channel. First of all, we suggest a general structure for <em>ε</em>-FPQC on the fermionic Gaussian systems with respect to the Schatten <em>p</em>-norm class, and then we give an explicit proof of the statement in the trace norm case. In addition, we study that the cardinality of a set of fermionic unitary operators agrees on the <em>ε</em>-FPQC condition in the trace norm case. This result may give birth to intuition on the construction of emerging fermionic Gaussian quantum communication or computing systems.展开更多
Public-key cryptosystems for quantum messages are considered from two aspects:public-key encryption and public-key authentication.Firstly,we propose a general construction of quantum public-key encryption scheme,and t...Public-key cryptosystems for quantum messages are considered from two aspects:public-key encryption and public-key authentication.Firstly,we propose a general construction of quantum public-key encryption scheme,and then construct an informationtheoretic secure instance.Then,we propose a quantum public-key authentication scheme,which can protect the integrity of quantum messages.This scheme can both encrypt and authenticate quantum messages.It is information-theoretic secure with regard to encryption,and the success probability of tampering decreases exponentially with the security parameter with regard to authentication.Compared with classical public-key cryptosystems,one private-key in our schemes corresponds to an exponential number of public-keys,and every quantum public-key used by the sender is an unknown quantum state to the sender.展开更多
文摘We investigate a quantum communication protocol, of so-called approximate quantum state sharing (AQSS), that protocol is basically based on pair of private quantum channels. In this paper, we prove that the scheme is secure against any external and internal attacks of wiretapping in principle. Although the protocol leaks small amount of information corresponding to a security parameter , the scheme still preserves its information-theoretic security.
文摘The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks and the quantum channel capacity problems. In this paper, we primally introduce a notion of approximate private quantum channel (<em>ε</em>-PQC) on <em>fermionic</em> Gaussian systems (<em>i.e.</em>, <em>ε</em>-FPQC), and construct its explicit form of the fermionic (Gaussian) private quantum channel. First of all, we suggest a general structure for <em>ε</em>-FPQC on the fermionic Gaussian systems with respect to the Schatten <em>p</em>-norm class, and then we give an explicit proof of the statement in the trace norm case. In addition, we study that the cardinality of a set of fermionic unitary operators agrees on the <em>ε</em>-FPQC condition in the trace norm case. This result may give birth to intuition on the construction of emerging fermionic Gaussian quantum communication or computing systems.
基金supported by the National Natural Science Foundation of China (Grant No. 61173157)Strategy Pilot Project of Chinese Academy of Sciences (Grant No. Sub-project XD06010702)IIE’s Cryptography Research Project
文摘Public-key cryptosystems for quantum messages are considered from two aspects:public-key encryption and public-key authentication.Firstly,we propose a general construction of quantum public-key encryption scheme,and then construct an informationtheoretic secure instance.Then,we propose a quantum public-key authentication scheme,which can protect the integrity of quantum messages.This scheme can both encrypt and authenticate quantum messages.It is information-theoretic secure with regard to encryption,and the success probability of tampering decreases exponentially with the security parameter with regard to authentication.Compared with classical public-key cryptosystems,one private-key in our schemes corresponds to an exponential number of public-keys,and every quantum public-key used by the sender is an unknown quantum state to the sender.