A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9...A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9μm,and the diffusion processing time needed for forming junction isolation diffusions is substantially reduced. The isolation diffusions have a smaller lateral extent and occupy less chip area. High voltage double RESURF LD- MOS with a breakdown voltage of up to 900V,as well as low voltage CMOS and BJT,are achieved using this high voltage BCD compatible process. An experimental high voltage half bridge gate drive IC using a coupled level shift structure is also successfully implemented, and the high side floating offset voltage in the half bridge drive IC is 880V. The major features of this process for high voltage applications are also clearly demonstrated.展开更多
We propose a single-poly MTP (multi-time programmable) cell consisting of one capacitor and two transistors based on MagnaChip's BCD process. The area of a unit cell is 37.743 75μm^2. The proposed single-poly MTP ...We propose a single-poly MTP (multi-time programmable) cell consisting of one capacitor and two transistors based on MagnaChip's BCD process. The area of a unit cell is 37.743 75μm^2. The proposed single-poly MTP cell is erased and programmed by the FN tunnelling scheme. We design a 256 bit MTP memory for PMICs (power management ICs) using the proposed single-poly MTP cells. For small-area designs, we propose a selection circuit between V10V and VSV, and a WL (word-line) driver by simplifying its logic circuit. We reduce the total layout area by using pumped internal node voltages from a seven-stage cross-coupled charge pump for V10V (=10 V) and V5V (=5 V) without any additional charge pumps. The layout size of the designed 256 bit MTP memory is 618.250 μm × 437.425μm.展开更多
A VDMOS integrated in a 170V scan-driver chip of a plasma display panel (PDP) is described,which is based on epitaxial bipolar-CMOS-DMOS (BCD) technology. Some key considerations and parameters of the design are d...A VDMOS integrated in a 170V scan-driver chip of a plasma display panel (PDP) is described,which is based on epitaxial bipolar-CMOS-DMOS (BCD) technology. Some key considerations and parameters of the design are discussed. The thickness of epitaxial layer is 17μm, the area of a single VDMOS structure cell is 324μm^2, and only 18 photoetching steps are needed in the development process. It is also compatible with standard CMOS, bipo- lar,and p-LDMOS devices. The breakdown voltage of VDMOS in the process control module (PCM) is more than 200V. Five kinds of VDMOS modules are integrated in 64 channel PDP scan-driver IC, and on-line system verifica- tion is done on a LG-model-42v6 PDP.展开更多
A high-voltage p-LDMOS(HV-pMOS) with field-oxide as gate dielectric and a RESURF drain drift region to undertake high gate-source voltage and drain-source voltage for the scan driver chip of plasma display panels (...A high-voltage p-LDMOS(HV-pMOS) with field-oxide as gate dielectric and a RESURF drain drift region to undertake high gate-source voltage and drain-source voltage for the scan driver chip of plasma display panels (PDP) is purposed based on the epitaxial bipolar-CMOS-DMOS (BCD) process. The key considerations and parameters of the design are discussed:the thickness of gate dielectrics is 1mm and the area of the device is 80μm × 80μm. Only 18 photoetching steps are needed in the developed process,which is compatible with standard CMOS, bipolar, and VDMOS devices. The breakdown voltage of the HV-pMOS in the process control module (PCM) is more than 200V. The results are favorable for 170V PDP scan driver chips,which contribute to the competitive cost efficiency.展开更多
文摘A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9μm,and the diffusion processing time needed for forming junction isolation diffusions is substantially reduced. The isolation diffusions have a smaller lateral extent and occupy less chip area. High voltage double RESURF LD- MOS with a breakdown voltage of up to 900V,as well as low voltage CMOS and BJT,are achieved using this high voltage BCD compatible process. An experimental high voltage half bridge gate drive IC using a coupled level shift structure is also successfully implemented, and the high side floating offset voltage in the half bridge drive IC is 880V. The major features of this process for high voltage applications are also clearly demonstrated.
基金Project supported by the Second Stage of Brain Korea 21 Projectssupported by Industrial Strategic Technology Development Program funded by the Ministry of Knowledge Economy (MKE,Korea)(10039239,"Development of Power Management System SoC Supporting Multi-Battery-Cells and Multi-Energy-Sources for Smart Phones and Smart Devices")
文摘We propose a single-poly MTP (multi-time programmable) cell consisting of one capacitor and two transistors based on MagnaChip's BCD process. The area of a unit cell is 37.743 75μm^2. The proposed single-poly MTP cell is erased and programmed by the FN tunnelling scheme. We design a 256 bit MTP memory for PMICs (power management ICs) using the proposed single-poly MTP cells. For small-area designs, we propose a selection circuit between V10V and VSV, and a WL (word-line) driver by simplifying its logic circuit. We reduce the total layout area by using pumped internal node voltages from a seven-stage cross-coupled charge pump for V10V (=10 V) and V5V (=5 V) without any additional charge pumps. The layout size of the designed 256 bit MTP memory is 618.250 μm × 437.425μm.
文摘A VDMOS integrated in a 170V scan-driver chip of a plasma display panel (PDP) is described,which is based on epitaxial bipolar-CMOS-DMOS (BCD) technology. Some key considerations and parameters of the design are discussed. The thickness of epitaxial layer is 17μm, the area of a single VDMOS structure cell is 324μm^2, and only 18 photoetching steps are needed in the development process. It is also compatible with standard CMOS, bipo- lar,and p-LDMOS devices. The breakdown voltage of VDMOS in the process control module (PCM) is more than 200V. Five kinds of VDMOS modules are integrated in 64 channel PDP scan-driver IC, and on-line system verifica- tion is done on a LG-model-42v6 PDP.
基金the National High Technology Research and Development Program of China(No.2003AA1Z1410)the Xi'an Science and Technology Planning Project(No.ZX04003)~~
文摘A high-voltage p-LDMOS(HV-pMOS) with field-oxide as gate dielectric and a RESURF drain drift region to undertake high gate-source voltage and drain-source voltage for the scan driver chip of plasma display panels (PDP) is purposed based on the epitaxial bipolar-CMOS-DMOS (BCD) process. The key considerations and parameters of the design are discussed:the thickness of gate dielectrics is 1mm and the area of the device is 80μm × 80μm. Only 18 photoetching steps are needed in the developed process,which is compatible with standard CMOS, bipolar, and VDMOS devices. The breakdown voltage of the HV-pMOS in the process control module (PCM) is more than 200V. The results are favorable for 170V PDP scan driver chips,which contribute to the competitive cost efficiency.