As one of prussian blue analogues,Co_(3)[Co(CN)_(6)]_(2) has been explored as a promising anode material for potassium-ion batteries(PIBs) owing to its high potassium storage capacity.Unfortunately,Co_(3)[Co(CN)_(6)]_...As one of prussian blue analogues,Co_(3)[Co(CN)_(6)]_(2) has been explored as a promising anode material for potassium-ion batteries(PIBs) owing to its high potassium storage capacity.Unfortunately,Co_(3)[Co(CN)_(6)]_(2) possesses low electronic conductivity and its structure collapses easily during potassiation and depotassiation,resulting in poor rate performance and cyclic stability.To solve these problems,we develop a facile multi-step method to successfully combine uniformCo_(3)[Co(CN)_(6)]_(2) nanocubes with rGO by C-O-Co bonds.As expected,these chemcial bonds shorten the distance betweenCo_(3)[Co(CN)_(6)]_(2) and rGO to the angstrom meter level,which significantly improve the electronic conductivity ofCo_(3)[Co(CN)_(6)]_(2).Besides,the complete encapsulation ofCo_(3)[Co(CN)_(6)]_(2) nanocubes by rGO endows the structure ofCo_(3)[Co(CN)_(6)]_(2) with high stability,thus withstanding repeated insertion/extraction of potassium-ions without visible morphological and structural changes.Benefiting from the abovementioned structural advantages,the CO3 [Co(CN)6]2/rGO nanocomposite exhibits a high reversible capacity of 400.8 mAh g^(-1) at a current density of 0.1 A g^(-1),an exceptional rate capability of 115.5 mAh g^(-1) at 5 A g^(-1), and an ultralong cycle life of 231.9 mAh g^(-1) at 0.1 A g^(-1) after 1000 cycles.Additionally,the effects of different amounts of rGO and different sizes ofCo_(3)[Co(CN)_(6)]_(2) nanocubes on the potassium storage performance are also studied.This work offers an ideal route to significantly enhance the electrochemical properties of prussian blue analogues.展开更多
Co thin films were subjected to 50 keV carbon ion implantation.At the dose of 2.5× 10^(17)/cm^2,a hexagonal Co-carbide phase was observed for the first time.The lattice con- stants from electron diffraction are a...Co thin films were subjected to 50 keV carbon ion implantation.At the dose of 2.5× 10^(17)/cm^2,a hexagonal Co-carbide phase was observed for the first time.The lattice con- stants from electron diffraction are a=0.2685 nm and c=0.4335 nm.The phase does not dis- appear until the dose of 9×10^(17)/cm^2.Auger spectra showed that the stoichiometry was Co_(2-3)C.The behavior of the ferromagnetic carbides along the descending sequence of Ni-Fe-Co by Fermi energy of solids was interpreted.Furthermore,based on the kinetic con- dition of phase transformation and the band theory of solids,a possible explanation about the difference of the results of ion-metallurgy and thermal metallurgy was proposed.展开更多
The oxidative dehydrogenation (ODH) of isobutane over Cr_2O_3/La_2(CO_3)_3 has been investigated in a low-pressure Knudsen cell reactor, under conditions where the kinetics of the primary reaction steps can be accurat...The oxidative dehydrogenation (ODH) of isobutane over Cr_2O_3/La_2(CO_3)_3 has been investigated in a low-pressure Knudsen cell reactor, under conditions where the kinetics of the primary reaction steps can be accurately determined. By heating the catalyst at a constant rate from 150-300℃, temperature fluctuations due to non-equilibrium adsorption are minimized. The evolved gas profiles show that ODH to isobutene and water is a primary reaction pathway, while carbon dioxide, which forms from the catalyst during reaction, is the only other product. This CO2 evolution may enhance the activity of the catalyst. Isobutene formation proceeds with the participation of lattice oxygen from the Cr2O3/La2(CO3)3 catalyst. The intrinsic Arrhenius rate constant for the ODH of isobutane isk(s-1) = 1011.5±2.2exp{-((55±5) -ΔHads kJmol-1)/RT}The small pre-exponential factor is expected for a concerted mechanism and for such a catalyst with a small surface area and limited porosity.展开更多
Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle ...Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle performance and poor rate property hinder its large-scale application.The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate.In this study,Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) is modified by using Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)ionic conductor.The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C,with a capacity retention of 81%.Compared with the uncoated pristine LRNCM(188.4 m A·h/g and 76%),LRNCM after the LATP modification shows superior cycle performance.Moreover,the lithium-ion diffusion coefficient D_(Li+)is a crucial factor affecting the rate performance,and the D_(Li+)of the LRNCM material is improved from 4.94×10^(-13) to 5.68×10^(-12)cm^(2)/s after modification.The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C,with an improved rate performance.Thus,the modification layer can considerably enhance the electrochemical performance of LRNCM.展开更多
Novel N-doped Bi_(3)O_(4)Br/(BiO)_(2)CO_(3) ultrathin nanojunctions have been prepared.Alkalization dehalogenation was performed to form Bi_(3)O_(4)Br,surfactant was employed to control the ultrathin thickness,and few...Novel N-doped Bi_(3)O_(4)Br/(BiO)_(2)CO_(3) ultrathin nanojunctions have been prepared.Alkalization dehalogenation was performed to form Bi_(3)O_(4)Br,surfactant was employed to control the ultrathin thickness,and few-layers of C_(3)N_(4) as a sacrificial agent were used to build the N-doped(BiO)_(2)CO_(3).The photocatalytic behavior of the achieved N-doped Bi_(3)O_(4)Br/(BiO)_(2)CO_(3) ultrathin nanojunctions was evaluated through the degradation of antibiotic agent ciprofloxacin,tetracycline hydro-chloride,and endocrine disrupting chemical bisphenol A as well as typical dye rhodamine B under visible light irradiation.The matched energy band structure between Bi_(3)O_(4)Br and(BiO)_(2)CO_(3) could endow the highly efficient interfacial charge separation,thus leading to excellent nonselective photocatalytic behavior.The structure design in this system will open new windows for the reasonable design of other photocatalysts.展开更多
基金supported by the National Natural Science Foundation of China(51577094)the Natural Science Foundation of Jiangsu Province of China(BK20180086)。
文摘As one of prussian blue analogues,Co_(3)[Co(CN)_(6)]_(2) has been explored as a promising anode material for potassium-ion batteries(PIBs) owing to its high potassium storage capacity.Unfortunately,Co_(3)[Co(CN)_(6)]_(2) possesses low electronic conductivity and its structure collapses easily during potassiation and depotassiation,resulting in poor rate performance and cyclic stability.To solve these problems,we develop a facile multi-step method to successfully combine uniformCo_(3)[Co(CN)_(6)]_(2) nanocubes with rGO by C-O-Co bonds.As expected,these chemcial bonds shorten the distance betweenCo_(3)[Co(CN)_(6)]_(2) and rGO to the angstrom meter level,which significantly improve the electronic conductivity ofCo_(3)[Co(CN)_(6)]_(2).Besides,the complete encapsulation ofCo_(3)[Co(CN)_(6)]_(2) nanocubes by rGO endows the structure ofCo_(3)[Co(CN)_(6)]_(2) with high stability,thus withstanding repeated insertion/extraction of potassium-ions without visible morphological and structural changes.Benefiting from the abovementioned structural advantages,the CO3 [Co(CN)6]2/rGO nanocomposite exhibits a high reversible capacity of 400.8 mAh g^(-1) at a current density of 0.1 A g^(-1),an exceptional rate capability of 115.5 mAh g^(-1) at 5 A g^(-1), and an ultralong cycle life of 231.9 mAh g^(-1) at 0.1 A g^(-1) after 1000 cycles.Additionally,the effects of different amounts of rGO and different sizes ofCo_(3)[Co(CN)_(6)]_(2) nanocubes on the potassium storage performance are also studied.This work offers an ideal route to significantly enhance the electrochemical properties of prussian blue analogues.
文摘Co thin films were subjected to 50 keV carbon ion implantation.At the dose of 2.5× 10^(17)/cm^2,a hexagonal Co-carbide phase was observed for the first time.The lattice con- stants from electron diffraction are a=0.2685 nm and c=0.4335 nm.The phase does not dis- appear until the dose of 9×10^(17)/cm^2.Auger spectra showed that the stoichiometry was Co_(2-3)C.The behavior of the ferromagnetic carbides along the descending sequence of Ni-Fe-Co by Fermi energy of solids was interpreted.Furthermore,based on the kinetic con- dition of phase transformation and the band theory of solids,a possible explanation about the difference of the results of ion-metallurgy and thermal metallurgy was proposed.
文摘The oxidative dehydrogenation (ODH) of isobutane over Cr_2O_3/La_2(CO_3)_3 has been investigated in a low-pressure Knudsen cell reactor, under conditions where the kinetics of the primary reaction steps can be accurately determined. By heating the catalyst at a constant rate from 150-300℃, temperature fluctuations due to non-equilibrium adsorption are minimized. The evolved gas profiles show that ODH to isobutene and water is a primary reaction pathway, while carbon dioxide, which forms from the catalyst during reaction, is the only other product. This CO2 evolution may enhance the activity of the catalyst. Isobutene formation proceeds with the participation of lattice oxygen from the Cr2O3/La2(CO3)3 catalyst. The intrinsic Arrhenius rate constant for the ODH of isobutane isk(s-1) = 1011.5±2.2exp{-((55±5) -ΔHads kJmol-1)/RT}The small pre-exponential factor is expected for a concerted mechanism and for such a catalyst with a small surface area and limited porosity.
基金Project(51772333) supported by the National Natural Science Foundation of China。
文摘Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle performance and poor rate property hinder its large-scale application.The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate.In this study,Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) is modified by using Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)ionic conductor.The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C,with a capacity retention of 81%.Compared with the uncoated pristine LRNCM(188.4 m A·h/g and 76%),LRNCM after the LATP modification shows superior cycle performance.Moreover,the lithium-ion diffusion coefficient D_(Li+)is a crucial factor affecting the rate performance,and the D_(Li+)of the LRNCM material is improved from 4.94×10^(-13) to 5.68×10^(-12)cm^(2)/s after modification.The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C,with an improved rate performance.Thus,the modification layer can considerably enhance the electrochemical performance of LRNCM.
基金of China(No.22378206)and the Jiangsu Specially Appointed Professorship.
文摘Novel N-doped Bi_(3)O_(4)Br/(BiO)_(2)CO_(3) ultrathin nanojunctions have been prepared.Alkalization dehalogenation was performed to form Bi_(3)O_(4)Br,surfactant was employed to control the ultrathin thickness,and few-layers of C_(3)N_(4) as a sacrificial agent were used to build the N-doped(BiO)_(2)CO_(3).The photocatalytic behavior of the achieved N-doped Bi_(3)O_(4)Br/(BiO)_(2)CO_(3) ultrathin nanojunctions was evaluated through the degradation of antibiotic agent ciprofloxacin,tetracycline hydro-chloride,and endocrine disrupting chemical bisphenol A as well as typical dye rhodamine B under visible light irradiation.The matched energy band structure between Bi_(3)O_(4)Br and(BiO)_(2)CO_(3) could endow the highly efficient interfacial charge separation,thus leading to excellent nonselective photocatalytic behavior.The structure design in this system will open new windows for the reasonable design of other photocatalysts.