Spin-lattice relaxation time, spin-spin relaxation time and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY) experiments of polyoxyethylene lauryl ether (Brij-35) micelles in aqueous solutions at...Spin-lattice relaxation time, spin-spin relaxation time and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY) experiments of polyoxyethylene lauryl ether (Brij-35) micelles in aqueous solutions at a concentration of 100 times the critical micellar concentration (cmc) give direct evidence that the hydrophilic polyoxyethylene chains, staying in the exterior of the micellar core, are coiled, bent and aligned around the micellar core with a certain number of water molecules included. This hydrophilic layer is in contact with the solvent, water, keeping the micellar solution stable. 1H NMR relaxation time measurements show that the first oxyethylene group next to the alkyl chain participates in the formation of the surface area of the micellar core. The motion of the hydrophilic polyoxyethylene chains is less restricted as compared with the hydrophobic alkyl chains.展开更多
基金This work was supported by the National Key Basic Research Development Program "Fundamental Studies of the Extensively Enhanced Petroleum Recovery" (Grant No. G199022504) .
文摘Spin-lattice relaxation time, spin-spin relaxation time and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY) experiments of polyoxyethylene lauryl ether (Brij-35) micelles in aqueous solutions at a concentration of 100 times the critical micellar concentration (cmc) give direct evidence that the hydrophilic polyoxyethylene chains, staying in the exterior of the micellar core, are coiled, bent and aligned around the micellar core with a certain number of water molecules included. This hydrophilic layer is in contact with the solvent, water, keeping the micellar solution stable. 1H NMR relaxation time measurements show that the first oxyethylene group next to the alkyl chain participates in the formation of the surface area of the micellar core. The motion of the hydrophilic polyoxyethylene chains is less restricted as compared with the hydrophobic alkyl chains.