期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intermolecular interactions induced property improvement for clean fracturing fluid by deep eutectic solvents
1
作者 Xiang-Yu Wang Ming-Wei Zhao +6 位作者 Xu-Hao Wang Peng Liu Meng-Yao Fan Teng Li Zhen-Feng Ma Ying-Jie Dai Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3540-3552,共13页
Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-p... Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-price,low-toxicity,chemical stability and flexible designability.In this work,DESs were synthesized by mixing hydrogen bond acceptors(HBAs)and a given hydrogen bond donor(HBD)to explore their underlying influence on CFF properties based on the intermolecular interactions.The hydrogen-bonding,van der Waals and electrostatic interactions between DES components and surfactants improved the CFF properties by promoting the arrangement of surfactants at interface and enhancing the micelle network strength.The HBD enhanced the resistance of CFF for Ca^(2+) due to coordination-bonding interaction.The DESs composed of choline chloride(ChCl)and malonic acid show great enhancement for surface,rheology,temperature resistance,salt tolerance,drag reduction,and gel-breaking performance of CFFs.The DESs also improved the gel-breaking CFF-oil interactions,increasing the imbibition efficiencies to 44.2%in 74 h.Adjusting HBAs can effectively strengthen the intermolecular interactions(e.g.,HBA-surfactant and HBD-surfactant interactions)to improve CFF properties.The DESs developed in this study provide a novel strategy to intensify CFF properties. 展开更多
关键词 Deep eutectic solvents(DESs) Clean fracturing fluids(cffs) Intermolecular interactions Property improvement
下载PDF
Biomimetically Synthesized Aqueous Ferrofluids Having Antibacterial and Anticancer Properties
2
作者 Lubna Sheikh Richa Vohra +1 位作者 Anita Kamra Verma Suprabha Nayar 《Materials Sciences and Applications》 2015年第3期242-250,共9页
Synthesis of functional iron oxide nanoparticles, well dispersed in aqueous fluids still remains a challenge as its stability requires a delicate balance between electrostatic and magnetic interactions. Templated synt... Synthesis of functional iron oxide nanoparticles, well dispersed in aqueous fluids still remains a challenge as its stability requires a delicate balance between electrostatic and magnetic interactions. Templated synthesis using biomolecules is useful because the biomolecules have their unique arrangement in aqueous systems that enhance stability, commonly called “biomimetic synthesis”. We have developed a one-pot in-situ, low energy process for the synthesis of highly monodispersed, Collagen Functionalized Ferrofluids (CFF) as a templating agent in an aqueous medium. The nanoparticles so obtained were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR). The antibacterial activity in terms of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and growth inhibition has been assessed against gram positive, Staphylococcus aureus, ATCC 13709 (native strain) and in Escherichia coli, DH5α gram negative bacteria. The cytotoxicity of the CFFs on cancer cell lines human embryonic kidney (HEK), breast adenocarcinoma (MCF-7) and Ehrlich ascitic carcinoma (EAC) have also been investigated. CFFs indicated variable MIC and MBC values against S. aureus and E. coli being minimum for 1.5% CFF (MIC:23.43 μg/ml and 93.75 μg/ml and MBC: 46.87 μg/ml and 187.5 μg/ml). The observed cytotoxicity in mammalian cells indicated the susceptibility of MCF-7 breast cancer cells when compared to HEK cells. 展开更多
关键词 Collagen FUNCTIONALIZED FERROFLUIDS (cffs) ANTIBACTERIAL Biomimetics CYTOTOXICITY ANTI-CANCER Activity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部