针对目前基于信道脉冲响应(Channel Impulse Response,CIR)的非视距(None Line of Sight,NLoS)/视距(Line of Sight,LoS)识别方法精度低、泛化能力差的问题,提出了一种多层卷积神经网络(Convolutional Neural Network,CNN)与通道注意力...针对目前基于信道脉冲响应(Channel Impulse Response,CIR)的非视距(None Line of Sight,NLoS)/视距(Line of Sight,LoS)识别方法精度低、泛化能力差的问题,提出了一种多层卷积神经网络(Convolutional Neural Network,CNN)与通道注意力模块(Channel Attention Module,CAM)相结合的NLoS/LoS识别方法。在多层CNN中嵌入CAM提取原始CIR的时域数据特征,利用全局平均池化层代替全连接层进行特征整合并分类输出。使用欧洲地平线2020计划项目eWINE公开的数据集进行不同结构模型和不同识别方法的对比实验,结果表明,所提出的CNN-CAM模型LoS和NLoS召回率分别达到了92.29%与87.71%,准确率达到了90.00%,F1分数达到了90.22%。与现有多种传统识别方法相比,均具有更好的识别效果。展开更多
文摘针对目前基于信道脉冲响应(Channel Impulse Response,CIR)的非视距(None Line of Sight,NLoS)/视距(Line of Sight,LoS)识别方法精度低、泛化能力差的问题,提出了一种多层卷积神经网络(Convolutional Neural Network,CNN)与通道注意力模块(Channel Attention Module,CAM)相结合的NLoS/LoS识别方法。在多层CNN中嵌入CAM提取原始CIR的时域数据特征,利用全局平均池化层代替全连接层进行特征整合并分类输出。使用欧洲地平线2020计划项目eWINE公开的数据集进行不同结构模型和不同识别方法的对比实验,结果表明,所提出的CNN-CAM模型LoS和NLoS召回率分别达到了92.29%与87.71%,准确率达到了90.00%,F1分数达到了90.22%。与现有多种传统识别方法相比,均具有更好的识别效果。