从光电转换的基本原理出发,分析了禁带宽度 Eg、薄膜以及异质结对材料的选择原则。在异质结理论的基础上,分析了 p-ZnTe/n-CdTe 异质结的结区结构,在两种材料的界面处,导带底形成了不连续的“断口”,价带顶 p 区一侧形成尖峰,n 区一侧...从光电转换的基本原理出发,分析了禁带宽度 Eg、薄膜以及异质结对材料的选择原则。在异质结理论的基础上,分析了 p-ZnTe/n-CdTe 异质结的结区结构,在两种材料的界面处,导带底形成了不连续的“断口”,价带顶 p 区一侧形成尖峰,n 区一侧形成凹口。当热平衡时,由于导带中电子从 n 区到 p 区所遇到的势垒大于价带中空穴从 p 区到 n 区的势垒,所以,通过势垒的主要是空穴流。讨论了 p-Zn-Te/n-CdTe 异质结的制作方法及工艺问题。最后,给出了测试结果。展开更多
The scope of the study is the spectra of low-temperature (T = 2K) photoluminescence of a p-CdTe/n-CdS film heterostructure comprising a monolayer of CdTe microcrystals, where a single microcrystalline particle is typi...The scope of the study is the spectra of low-temperature (T = 2K) photoluminescence of a p-CdTe/n-CdS film heterostructure comprising a monolayer of CdTe microcrystals, where a single microcrystalline particle is typically one micron in size. Focus is made on the dominant band of “super-hot” emission appearing in the spectral region located in energy above the fundamental absorption edge of a CdTe bulk crystal. A theoretical model has been developed that assumes the existence of a space-charge layer inside a microcrystal, which leads to the formation of a triangular potential well for an electron near the surface. The anomalous emission band arises as a result of the optical transitions of electrons from near-surface levels of spatial quantization to valence band states.展开更多
文摘从光电转换的基本原理出发,分析了禁带宽度 Eg、薄膜以及异质结对材料的选择原则。在异质结理论的基础上,分析了 p-ZnTe/n-CdTe 异质结的结区结构,在两种材料的界面处,导带底形成了不连续的“断口”,价带顶 p 区一侧形成尖峰,n 区一侧形成凹口。当热平衡时,由于导带中电子从 n 区到 p 区所遇到的势垒大于价带中空穴从 p 区到 n 区的势垒,所以,通过势垒的主要是空穴流。讨论了 p-Zn-Te/n-CdTe 异质结的制作方法及工艺问题。最后,给出了测试结果。
文摘The scope of the study is the spectra of low-temperature (T = 2K) photoluminescence of a p-CdTe/n-CdS film heterostructure comprising a monolayer of CdTe microcrystals, where a single microcrystalline particle is typically one micron in size. Focus is made on the dominant band of “super-hot” emission appearing in the spectral region located in energy above the fundamental absorption edge of a CdTe bulk crystal. A theoretical model has been developed that assumes the existence of a space-charge layer inside a microcrystal, which leads to the formation of a triangular potential well for an electron near the surface. The anomalous emission band arises as a result of the optical transitions of electrons from near-surface levels of spatial quantization to valence band states.