The effects of two rare earth oxides such as CeO2 and Sm2O3 on the phase structure and dielectric properties of BaTiO3 ceramic were investigated. Results indicate that the dielectric constant of this system will incre...The effects of two rare earth oxides such as CeO2 and Sm2O3 on the phase structure and dielectric properties of BaTiO3 ceramic were investigated. Results indicate that the dielectric constant of this system will increase greatly with the increasing content of these two oxides, and Ce^4+ substitutes for Ba^2+ located at A-site in ABO3 structure. Quantitative XRD analysis shows that c/a ratio in the sample with addition of CeO2 will increase, which implies the increase of tetragonality in system, causing the augment of dielectric constant, and the decrease of the crystal's geometrical symmetry results in curie-temperature moving towards low temperature; Sm^3+(0.096 nm) substitutes for Ba^2+(0.135 nm) possessing larger radius in A-site and the electrovalency in A-site increases, the mutual effect is strengthened, so the polarization is enhanced, and the dielectric constant increases notablely.展开更多
In this work, we study the influence of the average crystallite size and dopant oxide on the reducibility of CeO2-based nanomaterials. Samples were prepared from commercial Gd2O3-, Sm2O3- and Y2O3-doped CeO2 powders b...In this work, we study the influence of the average crystallite size and dopant oxide on the reducibility of CeO2-based nanomaterials. Samples were prepared from commercial Gd2O3-, Sm2O3- and Y2O3-doped CeO2 powders by calcination at different temperatures ranging between 400°C and 900°C and characterized by X-ray powder diffraction, transmission electron microscopy and BET specific surface area. The reducibility of the samples was analyzed by temperature-programmed reduction and in situ dispersive X-ray absorption spectroscopy techniques. Our results clearly demonstrate that samples treated at lower temperatures, of smallest average crystallite size and highest specific surface areas, exhibit the best performance, while Gd2O3-doped ceria materials display higher reducibility than Sm2O3- and Y2O3-doped CeO2.展开更多
文摘The effects of two rare earth oxides such as CeO2 and Sm2O3 on the phase structure and dielectric properties of BaTiO3 ceramic were investigated. Results indicate that the dielectric constant of this system will increase greatly with the increasing content of these two oxides, and Ce^4+ substitutes for Ba^2+ located at A-site in ABO3 structure. Quantitative XRD analysis shows that c/a ratio in the sample with addition of CeO2 will increase, which implies the increase of tetragonality in system, causing the augment of dielectric constant, and the decrease of the crystal's geometrical symmetry results in curie-temperature moving towards low temperature; Sm^3+(0.096 nm) substitutes for Ba^2+(0.135 nm) possessing larger radius in A-site and the electrovalency in A-site increases, the mutual effect is strengthened, so the polarization is enhanced, and the dielectric constant increases notablely.
文摘In this work, we study the influence of the average crystallite size and dopant oxide on the reducibility of CeO2-based nanomaterials. Samples were prepared from commercial Gd2O3-, Sm2O3- and Y2O3-doped CeO2 powders by calcination at different temperatures ranging between 400°C and 900°C and characterized by X-ray powder diffraction, transmission electron microscopy and BET specific surface area. The reducibility of the samples was analyzed by temperature-programmed reduction and in situ dispersive X-ray absorption spectroscopy techniques. Our results clearly demonstrate that samples treated at lower temperatures, of smallest average crystallite size and highest specific surface areas, exhibit the best performance, while Gd2O3-doped ceria materials display higher reducibility than Sm2O3- and Y2O3-doped CeO2.