期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Micropillar Cavity Design for 1.55-μm Quantum-Dot Single-Photon Sources 被引量:1
1
作者 Hai-Zhi Song Wei Zhang +1 位作者 Li-Bo Yu Zhiming M.Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第3期221-230,共10页
The 1.55-μm quantum-dot (QD) micropillar cavities are strongly required as single photon sources (SPSs) for silica-fiber-based quantum information processing. Theoretical analysis shows that the adiabatic distributed... The 1.55-μm quantum-dot (QD) micropillar cavities are strongly required as single photon sources (SPSs) for silica-fiber-based quantum information processing. Theoretical analysis shows that the adiabatic distributed Bragg reflector (DBR) structure may greatly improve the quality of a micropillar cavity. An InGaAsP/InP micropillar cavity is originally difficult, but it becomes more likely usable with inserted tapered (thickness decreased towards the center) distributed DBRs. Simulation turns out that, incorporating adiabatically tapered DBRs, a Si/SiO2- InP hybrid micropillar cavity, which enables weakly coupling InAs/InP quantum dots (QDs), can even well satisfy strong coupling at a smaller diameter. Certainly, not only the tapered structure, other adiabatic designs, e.g., both DBR layers getting thicker and one thicker one thinner, also improve the quality, reduce the diameter, and degrade the fabrication difficulty of Si/SiO2-InP hybrid micropillar cavities. Furthermore, the problem of the thin epitaxial semiconductor layer can also be greatly resolved by inserting adiabatic InGaAsP/InP DBRs. With tapered DBRs, the InGaAsP/InP-air-aperture micro-pillar cavity serves as an efficient, coherent, and monolithically producible 1.55-μm single-photon source (SPS). The adiabatic design is thus an effective way to obtain prospective candidates for 1.55-μm QD SPSs. 展开更多
关键词 CAVITY distributed BRAGG reflectors(dbrs) micropillar quantum dot(QD) SINGLE-PHOTON source(SPS)
下载PDF
Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors
2
作者 DEZHONG CAO XIAOKUN YANG +4 位作者 LUYANG SHEN CHONGCHONG ZHAO CAINA LUAN JIN MA HONGDI XIAO 《Photonics Research》 SCIE EI 2018年第12期1144-1150,共7页
Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices.In this paper, we first report the use of the nanoporous GaN (NP-GaN) DBR as a template for regrowth of InGaN-... Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices.In this paper, we first report the use of the nanoporous GaN (NP-GaN) DBR as a template for regrowth of InGaN-based light-emitting diodes (LEDs). The wafer-scale NP-GaN DBR, which is fabricated by electrochemical etching in a neutral solution, has a smooth surface, high reflectivity (>99.5%), and wide spectral stop band width (>70 nm). The chemical composition of the regrown LED thin film is similar to that of the reference LED, but the photoluminescence (PL) lifetime, PL intensity, and electroluminescence intensity of the LED with the DBR are enhanced several times compared to those of the reference LED. The intensity enhancement is attributed to the light reflection effect of the NP-GaN DBR and improved crystalline quality as a result of the etching scheme, whereas the enhancement of PL lifetime is attributable to the latter. 展开更多
关键词 Distributed Bragg reflectors (dbrs) InGaN-based LIGHT-EMITTING diodes (LEDs) HIGHLY REFLECTIVE NANOPOROUS GAN mirrors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部