Objective To investigate the effects of echinacoside on the extracellular striatal levels of norepinephrine(NE),dopamine(DA),homovanillic acid(HVA),3,4-dihydroxyphenylethanoid acid(DOPAC),5-hydroxyindoleacetic...Objective To investigate the effects of echinacoside on the extracellular striatal levels of norepinephrine(NE),dopamine(DA),homovanillic acid(HVA),3,4-dihydroxyphenylethanoid acid(DOPAC),5-hydroxyindoleacetic acid(HIAA),and 5-hydroxytryptamine(5-HT) in middle cerebral artery occlusion(MCAO rats.Methods The middle cerebral artery was occluded in male Sprague-Dawley rats.Three days later microdialysis probes were placed into the right striatum of MCAO rat brains and the brains were perfused with Ringer's solution at a rate of 1.5 μL/min.Cerebral microdialysates were collected every 30 minutes from awake and freely moving rats before assaying for NE,DA,HVA,DOPAC,HIAA,and 5-HT levels by reverse phase HPLC with electrochemistry.Results Three days after MCAO,the extracellular striatal levels of NE,DA,DOPAC,HIAA,HVA,and 5-HT of the MCAO rats increased significantly(at least P0.05 vs.control).However,simultaneous treatment with echinacoside(30.0 or 15.0 mg/kg) attenuated these increases(at least P0.05 vs.non-treated model rats).Conclusion These results imply that echinacoside may protect striatal dopa minergic neurons from the injury induced by MCAO and may help prevent and treat cerebral ischemic diseases.展开更多
Dopamine and its receptors have been widely studied in the neurological conditions and in the retina. In this study, we evaluated the possible role of dopamine in rhegmatogenous retinal detachment(RRD) by comparing th...Dopamine and its receptors have been widely studied in the neurological conditions and in the retina. In this study, we evaluated the possible role of dopamine in rhegmatogenous retinal detachment(RRD) by comparing the amount of 3,4-dihydroxyphenylacetic acid(DOPAC), a surrogate index of retinal dopamin levels, in the vitreous sample of patients affected by RRD with those affected by macular pucker and vitre ous hemorrhage. Our results showed that significantly higher levels of DOPAC were found in the vitreou sample of patients affected by RRD compared with those affected by vitreous hemorrhage and macula pucker(P = 0.002). Specifically, no trace of the substance was found in vitreous hemorrhage and macula pucker samples. A slightly significant positive correlation was found among DOPAC and post-operativ best corrected visual acuity(r = 0.470, P = 0.049). No correlation was found between DOPAC and the day elapsed between diagnosis and surgery(P = 0.317). For the first time our findings suggest that DOPAC i released in RRD, but not in other retinal diseases such as vitreous hemorrhage and macular pucker. More over, we showed a correlation between visual acuity outcome and the amount of DOPAC in the vitreous This might have a potential, although still unknown, implication in the pathogenesis of the disease and/o in the associated photoreceptors loss. This study was approved by the Ethics Committee of Rome Tor Ver gata University Hospital(R.S.92.10) on September 24, 2010.展开更多
To determine dopamine and its metabolites during in vivo cerebral microdialysis by routine high performance liquid chromatography with electrochemical detection. Methods Microdialysis probes were placed into the right...To determine dopamine and its metabolites during in vivo cerebral microdialysis by routine high performance liquid chromatography with electrochemical detection. Methods Microdialysis probes were placed into the right striatum of Wistar rat brains and perfused with Ringer's solution at a rate of 1.5 pL/min. A reverse phase HPLC with electrochemistry was used to assay DA, DOPAC, and HVA after cerebral microdialysates were collected every 20 minutes from awake and freely moving rats. In order to identify the reliability of this method, its selectivity, linear range, precision and accuracy were tested and the contents of DA, DOPAC, and HVA in rat microdialysates were determined. Results The standard curve was in good linear at the concentration ranging from 74 nmol/L to 1.5 pmol/L for DOPAC (r^2= 0.9996), from 66 nmol/L to 1.3 gmol/L for DA (r^2=l.0000) and from 69 nmol/L to 1.4 pmol/L for HVA (r^2=0.9992). The recovery of DOPAC (0.30, 0.77, 1.49 gmol/L), DA (0,26, 0.69, 1.32 gmol/L), and HVA (0.27, 0.71, 1.37 gmol/L) was 82.00±1.70%, 104.00±4.00%, 98.70±3.10%; 92.30± 1.50%, 105.30±2.30%, 108.00±2.00%; 80.00±7.80%, 107.69±8.00%, and 108.66±3.10%, respectively at each concentration. Their intra-day RSD was 3.3%, 3.4%, and 2.5%, and inter-day RSD was 4.2%, 2.3%, and 5.6%, respectively. The mean extracellular concentrations of DOPAC, DA, and HVA in rat brain microdialysates were 10.7, 2.4, and 9.2 gmol/L (n=6), respectively. Conclusion The findings of our study suggested that the simple, accurate and stable method can be applied to basic researches of diseases related to monoamines neurotransmitters by cerebral microdialysis in rats.展开更多
基金supported by the National Natural Science Foundation of China (No.30560171,No.30860334)
文摘Objective To investigate the effects of echinacoside on the extracellular striatal levels of norepinephrine(NE),dopamine(DA),homovanillic acid(HVA),3,4-dihydroxyphenylethanoid acid(DOPAC),5-hydroxyindoleacetic acid(HIAA),and 5-hydroxytryptamine(5-HT) in middle cerebral artery occlusion(MCAO rats.Methods The middle cerebral artery was occluded in male Sprague-Dawley rats.Three days later microdialysis probes were placed into the right striatum of MCAO rat brains and the brains were perfused with Ringer's solution at a rate of 1.5 μL/min.Cerebral microdialysates were collected every 30 minutes from awake and freely moving rats before assaying for NE,DA,HVA,DOPAC,HIAA,and 5-HT levels by reverse phase HPLC with electrochemistry.Results Three days after MCAO,the extracellular striatal levels of NE,DA,DOPAC,HIAA,HVA,and 5-HT of the MCAO rats increased significantly(at least P0.05 vs.control).However,simultaneous treatment with echinacoside(30.0 or 15.0 mg/kg) attenuated these increases(at least P0.05 vs.non-treated model rats).Conclusion These results imply that echinacoside may protect striatal dopa minergic neurons from the injury induced by MCAO and may help prevent and treat cerebral ischemic diseases.
文摘Dopamine and its receptors have been widely studied in the neurological conditions and in the retina. In this study, we evaluated the possible role of dopamine in rhegmatogenous retinal detachment(RRD) by comparing the amount of 3,4-dihydroxyphenylacetic acid(DOPAC), a surrogate index of retinal dopamin levels, in the vitreous sample of patients affected by RRD with those affected by macular pucker and vitre ous hemorrhage. Our results showed that significantly higher levels of DOPAC were found in the vitreou sample of patients affected by RRD compared with those affected by vitreous hemorrhage and macula pucker(P = 0.002). Specifically, no trace of the substance was found in vitreous hemorrhage and macula pucker samples. A slightly significant positive correlation was found among DOPAC and post-operativ best corrected visual acuity(r = 0.470, P = 0.049). No correlation was found between DOPAC and the day elapsed between diagnosis and surgery(P = 0.317). For the first time our findings suggest that DOPAC i released in RRD, but not in other retinal diseases such as vitreous hemorrhage and macular pucker. More over, we showed a correlation between visual acuity outcome and the amount of DOPAC in the vitreous This might have a potential, although still unknown, implication in the pathogenesis of the disease and/o in the associated photoreceptors loss. This study was approved by the Ethics Committee of Rome Tor Ver gata University Hospital(R.S.92.10) on September 24, 2010.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 30560171).
文摘To determine dopamine and its metabolites during in vivo cerebral microdialysis by routine high performance liquid chromatography with electrochemical detection. Methods Microdialysis probes were placed into the right striatum of Wistar rat brains and perfused with Ringer's solution at a rate of 1.5 pL/min. A reverse phase HPLC with electrochemistry was used to assay DA, DOPAC, and HVA after cerebral microdialysates were collected every 20 minutes from awake and freely moving rats. In order to identify the reliability of this method, its selectivity, linear range, precision and accuracy were tested and the contents of DA, DOPAC, and HVA in rat microdialysates were determined. Results The standard curve was in good linear at the concentration ranging from 74 nmol/L to 1.5 pmol/L for DOPAC (r^2= 0.9996), from 66 nmol/L to 1.3 gmol/L for DA (r^2=l.0000) and from 69 nmol/L to 1.4 pmol/L for HVA (r^2=0.9992). The recovery of DOPAC (0.30, 0.77, 1.49 gmol/L), DA (0,26, 0.69, 1.32 gmol/L), and HVA (0.27, 0.71, 1.37 gmol/L) was 82.00±1.70%, 104.00±4.00%, 98.70±3.10%; 92.30± 1.50%, 105.30±2.30%, 108.00±2.00%; 80.00±7.80%, 107.69±8.00%, and 108.66±3.10%, respectively at each concentration. Their intra-day RSD was 3.3%, 3.4%, and 2.5%, and inter-day RSD was 4.2%, 2.3%, and 5.6%, respectively. The mean extracellular concentrations of DOPAC, DA, and HVA in rat brain microdialysates were 10.7, 2.4, and 9.2 gmol/L (n=6), respectively. Conclusion The findings of our study suggested that the simple, accurate and stable method can be applied to basic researches of diseases related to monoamines neurotransmitters by cerebral microdialysis in rats.