To mitigate the degree of damage to passengers caused by automobile collisions, a friction damper was built and used in experimental tests to test its effectiveness in impact energy attenuation. The study revealed tha...To mitigate the degree of damage to passengers caused by automobile collisions, a friction damper was built and used in experimental tests to test its effectiveness in impact energy attenuation. The study revealed that energy absorption capacity of a bumper can be improved with the addition of a friction damper. The results revealed that the addition of the friction damper to an automobile bumper to give a bumper-damper system could attenuate about 32.5 % more energy than with the bumper alone. It can be concluded that the effectiveness of automobile bumpers to withstand impact of vehicles by absorbing the kinetic energy from the impact can be improved with the use of a passive friction damper. That is, a passive friction damper system could be used to attenuate more road vehicle impact energy in collisions.展开更多
Solid-state batteries have become a frontrunner in humankind’s pursuit of safe and stable energy storage systems with high energy and power density.Electrolyte materials,currently,seem to be the Achilles’heel of sol...Solid-state batteries have become a frontrunner in humankind’s pursuit of safe and stable energy storage systems with high energy and power density.Electrolyte materials,currently,seem to be the Achilles’heel of solid-state batteries due to the slow kinetics and poor interfacial wetting.Combining the merits of solid inorganic electrolytes(SIEs)and solid polymer electrolytes(SPEs),inorganic/polymer hybrid electrolytes(IPHEs)integrate improved ionic conductivity,great interfacial compatibility,wide electrochemical stability window,and high mechanical toughness and flexibility in one material,having become a sought-after pathway to high-performance all-solid-state lithium batteries.Herein,we present a comprehensive overview of recent progress in IPHEs,including the awareness of ion migration fundamentals,advanced architectural design for better electrochemical performance,and a perspective on unconquered challenges and potential research directions.This review is expected to provide a guidance for designing IPHEs for next-generation lithium batteries,with special emphasis on developing high-voltage-tolerance polymer electrolytes to enable higher energy density and three-dimensional(3D)continuous ion transport highways to achieve faster charging and discharging.展开更多
Hydrogen as an energy carrier represents one of the most promising carbon-free energy solutions.The ongoing development of power-to-gas(Pt G)technologies that supports large-scale utilization of hydrogen is therefore ...Hydrogen as an energy carrier represents one of the most promising carbon-free energy solutions.The ongoing development of power-to-gas(Pt G)technologies that supports large-scale utilization of hydrogen is therefore expected to support hydrogen economy with a final breakthrough.In this paper,the economic performance of a MW-sized hydrogen system,i.e.a composition of water electrolysis,hydrogen storage,and fuel cell combined heat and power plant(FCCHP),is assessed as an example of hydrogen-based bidirectional electrical energy storage(EES).The analysis is conducted in view of the Danish electricity spot market that has high price volatility due to its high share of wind power.An economic dispatch model is developed as a mixed-integer programming(MIP)problem to support the estimation of variable cost of such a system taking into account a good granularity of the technical details.Based on a projected technology improvement by 2020,sensitivity analysis is conducted to illustrate how much the hydrogen-based EES is sensitive to variations of the hydrogen price and the capacity of hydrogen storage.展开更多
文摘To mitigate the degree of damage to passengers caused by automobile collisions, a friction damper was built and used in experimental tests to test its effectiveness in impact energy attenuation. The study revealed that energy absorption capacity of a bumper can be improved with the addition of a friction damper. The results revealed that the addition of the friction damper to an automobile bumper to give a bumper-damper system could attenuate about 32.5 % more energy than with the bumper alone. It can be concluded that the effectiveness of automobile bumpers to withstand impact of vehicles by absorbing the kinetic energy from the impact can be improved with the use of a passive friction damper. That is, a passive friction damper system could be used to attenuate more road vehicle impact energy in collisions.
基金This work was financially supported by the National Natural Science Foundation of China(No.22003017)the National Key R&D Program of China(No.2018YFB1900603)+2 种基金Natural Science Foundation of Guangdong Province(No.2020A1515011506)Xiaoyu JI is thankful for the financial support from the China Scholarship Council(No.201903170199)for his visit to Yale UniversityThe authors thank Prof.Mingjiang ZHONG(Yale University)and Prof.Stephen Z.D.CHENG(University of Akron)for their helpful discussion.
文摘Solid-state batteries have become a frontrunner in humankind’s pursuit of safe and stable energy storage systems with high energy and power density.Electrolyte materials,currently,seem to be the Achilles’heel of solid-state batteries due to the slow kinetics and poor interfacial wetting.Combining the merits of solid inorganic electrolytes(SIEs)and solid polymer electrolytes(SPEs),inorganic/polymer hybrid electrolytes(IPHEs)integrate improved ionic conductivity,great interfacial compatibility,wide electrochemical stability window,and high mechanical toughness and flexibility in one material,having become a sought-after pathway to high-performance all-solid-state lithium batteries.Herein,we present a comprehensive overview of recent progress in IPHEs,including the awareness of ion migration fundamentals,advanced architectural design for better electrochemical performance,and a perspective on unconquered challenges and potential research directions.This review is expected to provide a guidance for designing IPHEs for next-generation lithium batteries,with special emphasis on developing high-voltage-tolerance polymer electrolytes to enable higher energy density and three-dimensional(3D)continuous ion transport highways to achieve faster charging and discharging.
基金the financial support of Innovation Fund Denmark through Project 3045-00012B
文摘Hydrogen as an energy carrier represents one of the most promising carbon-free energy solutions.The ongoing development of power-to-gas(Pt G)technologies that supports large-scale utilization of hydrogen is therefore expected to support hydrogen economy with a final breakthrough.In this paper,the economic performance of a MW-sized hydrogen system,i.e.a composition of water electrolysis,hydrogen storage,and fuel cell combined heat and power plant(FCCHP),is assessed as an example of hydrogen-based bidirectional electrical energy storage(EES).The analysis is conducted in view of the Danish electricity spot market that has high price volatility due to its high share of wind power.An economic dispatch model is developed as a mixed-integer programming(MIP)problem to support the estimation of variable cost of such a system taking into account a good granularity of the technical details.Based on a projected technology improvement by 2020,sensitivity analysis is conducted to illustrate how much the hydrogen-based EES is sensitive to variations of the hydrogen price and the capacity of hydrogen storage.