期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical investigation for the suitable choice of bubble diameter correlation for EMMS/bubbling drag model 被引量:1
1
作者 Nouman Ahmad Jianqiang Deng Muhammad Adnan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期254-270,共17页
Mesoscale bubbles exist inherently in bubbling fluidized beds and hence should be considered in the constitutive modeling of the drag force.The energy minimization multiscale bubbling(EMMS/bubbling)drag model takes th... Mesoscale bubbles exist inherently in bubbling fluidized beds and hence should be considered in the constitutive modeling of the drag force.The energy minimization multiscale bubbling(EMMS/bubbling)drag model takes the effects of mesoscale structures(i.e.,bubbles)into the modeling of drag coefficient and thus improves the coarse-grid simulation of bubbling and turbulent fluidized beds.However,its dependence on the bubble diameter correlation has not been thoroughly investigated.The hydrodynamic disparity between homogeneous and heterogeneous fluidization is accounted for by the heterogeneity index,H_(d),which can be affected by choice of bubble diameter correlation.How this choice of bubble diameter correlation influences the model prediction calls for further fundamental research.This article incorporated seven different bubble diameter correlations into EMMS/bubbling drag model and studied their effects on H_(d).The performance of these correlations has been compared with the correlation used previously by EMMS/bubbling drag model.We found that some of the correlations predicted lower Hd by order of a magnitude than the correlation used by the original EMMS/bubbling drag.Based on such analysis,we proposed a modification in the EMMS drag model for bubbling and turbulent fluidized beds.A computational fluid dynamics(CFD)simulation using two-fluid model with the modified EMMS/bubbling drag model was performed for two bubbling and one turbulent fluidized beds.Voidage distribution,time averaged solid concentration and axial solid concentration profiles were studied and compared with the previous version of the EMMS/bubbling drag model and experimental data.We found that the right choice of bubble diameter correlations can significantly improve the results for CFD simulations. 展开更多
关键词 MESOSCALE BUBBLES Energy minimization multiscale(emms) Heterogeneity index Bubbling fluidized bed
下载PDF
Flow characteristics simulation of spiral coil reactor used in the thermochemical energy storage system
2
作者 Xiaoyi Chen Danyang Song +3 位作者 Dong Zhang Xiaogang Jin Xiang Ling Dongren Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期364-379,共16页
According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat sto... According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat storage is a considerable solution for this problem and thermochemical energy storage is the most promising way because of its great energy density and stability.However,this technology is not mature enough to be applied to the industry.The reactor is an important component in the thermochemical energy storage system where the charging and discharging process happens.In this paper,a spiral coil is proposed and used as a reactor in the thermochemical energy storage system.The advantages of the spiral coil include simple structure,small volume,and so on.To investigate the flow characteristics,the simulation was carried out based on energy-minimization multi-scale model(EMMS)and Eulerian two-phase model.CaCO_(3) particles were chosen as the reactants.Particle distribution was shown in the results.The gas initial velocity was set to 2 m·s^(-1),3 m·s^(-1),and 4 m·s^(-1).When the particles flowed in the coil,gravity,centrifugal force and drag force influenced their flow.With the Reynold numbers increasing,centrifugal and drag force got larger.Accumulation phenomenon existed in the coil and results showed with the gas velocity increasing,accumulation moved from the bottom to the outer wall of the coil.Besides,the accumulation phenomenon was stabilized whenφ>720°.Also due to the centrifugal force,a secondary flow formed,which means solid particles moved from the inside wall to the outside wall.This secondary flow could promote turbulence and mixing of particles and gas.In addition,when the particle volume fraction is reduced from 0.2 to 0.1,the accumulation at the bottom of the coil decreases,and the unevenness of the velocity distribution becomes larger. 展开更多
关键词 Thermochemical energy storage CaCO3/CaO Reactors Simulation Two-phase flow Energy-minimization multi-scale model(emms)
下载PDF
MP-PIC simulation of circulating fluidized beds using an EMMS based drag model for Geldart B particles 被引量:2
3
作者 Timo Dymala Tom Wytrwat Stefan Heinrich 《Particuology》 SCIE EI CAS CSCD 2021年第6期76-90,共15页
In this study the multiphase particle-in-cell(MP-PIC)method is used for the simulation of two pilot-scale circulating fluidized beds(CFBs)with quartz sand belonging to Geldart’s group B as bed material.The simulation... In this study the multiphase particle-in-cell(MP-PIC)method is used for the simulation of two pilot-scale circulating fluidized beds(CFBs)with quartz sand belonging to Geldart’s group B as bed material.The simulations were performed using a homogeneous drag model as well as a structure dependent drag model based on the energy minimization multi-scale method(EMMS).The results are compared with experimental data from literature as well as experiments.The simulations with the EMMS based drag model show a good agreement of the time-averaged axial solids concentration,circulation rate and riser pressure drop.Furthermore,a lower grid sensitivity is observed compared to the homogeneous drag model.In contrast to the conventional drag model a dense bottom zone is predicted by the EMMS based drag model.An overprediction of the solid concentration in the dense bottom zone is presumably due to an overprediction of the cluster diameter that is calculated using an empirical cluster diameter correlation.This shows the necessity for a new meso-scale cluster correlation for the simulation of Geldart B particles.Furthermore,the results of the time-averaged radial solids concentration differ from the expectations of a core-annulus flow indicating that a mesh refinement at the walls is necessary.Finally,the importance of using a realistic particle size distribution is identified. 展开更多
关键词 3D-CFD simulation Circulating fluidized bed(CFB) Multiphase particle-in-cell method(MP-PIC) Energy minimizing multi-scale theory(emms) Validation study
原文传递
关于超级计算发展战略方向的思考 被引量:10
4
作者 葛蔚 郭力 +3 位作者 李静海 陈左宁 胡苏太 刘鑫 《中国科学院院刊》 CSCD 2016年第6期614-623,共10页
超级计算能力是国家科技竞争力乃至综合国力的重要标志,也是经济社会发展、国防和国家安全的重要支撑。特别是在网络化、大数据、云计算和虚拟现实迅猛发展的背景下,超级计算不但是科技发展的利器,正引发科研模式的根本变革,也将成为重... 超级计算能力是国家科技竞争力乃至综合国力的重要标志,也是经济社会发展、国防和国家安全的重要支撑。特别是在网络化、大数据、云计算和虚拟现实迅猛发展的背景下,超级计算不但是科技发展的利器,正引发科研模式的根本变革,也将成为重要的社会基础设施,并最终深刻地改变我们的生产和生活方式。但目前超级计算正面临应用效率低、能耗高、稳定性差和难以应用等严峻挑战。基于在复杂系统多尺度模拟方面多年的探索和积累,文章提出,按照计算对象、模型、软件与硬件的逻辑和结构一致的原理优化计算机体系结构,缓解和克服商品化通用硬件系统开发中的难点,可能是突破这些瓶颈的一条具有普遍意义的途径。 展开更多
关键词 超级计算 多尺度计算模式 能量最小多尺度(emms)范式 虚拟过程工程
原文传递
INTERACTION BETWEEN SO_2 FROM FLUE GAS AND SORBENT PARTICLES IN DRY FGD PROCESSES
5
作者 HaiyingQi ChangfuYou XuchangXu 《China Particuology》 SCIE EI CAS CSCD 2005年第1期141-141,共1页
Among the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal... Among the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal efficiency to meet both technical and economic requirements, and for making the best quality byproduct gypsum as a useful additive for improving alkali soil. Among the possible modifications two major factors have been selected for study: (1) favorable chemical reaction kinetics at elevated temperatures and the sorbent characteristics; (2) enhanced diffusion of SO2 to the surface and within the pores of sorbent particles that are closely related to gas-solid two-phase flow patterns caused by flue gas and sorbent particles in the reactor. To achieve an ideal pore structure, a sorbent was prepared through hydration reaction by mixing lime and fly ash collected from bag house of power plants to form a slurry, which was first dewatered and then dried. The dry sorbent was found capable of rapid conversion of 70% of its calcium content at 700℃, reaching a desulphurization efficiency of over 90% at a Ca/S ratio of 1.3. Experiments confirmed that the diffusion effect of SO2 is an important factor and that gas-solid two-phase flow plays a key role to mixing and contact between SO2 and sorbent particles. For designing the FDG reactor, a new theoretical drag model was developed by combination of CFD with the Energy Minimization Multi-Scale (EMMS) theory for dense fluidi-zation systems. This new drag model was first verified by comparing calculated and measured drag values, and was then implemented in simulation of gas-solid two-phase flow in two circulating fluidized beds with different sizes and flow parameters. One riser has diameter and height of 0.15 m×3m and another one 0.2m×14.2m. Their superficial gas velocities are 4 and 5.2 m·s-1, respectively, and the circulating rate 53 and 489 kg·(m-2·s-1). FCC particles were used in both cases. The results show that not only the static pressure drop along the riser height, but also radial distributions of particle volume fraction have been very well predicted in comparison with experiments. The new drag model is expected to shed more light on the further improvement of SO2 diffusion to solid sorbent and optimization of reactor structure. 展开更多
关键词 interaction between gas and particles flue gas desulphurization (FGD) diffusion of SO2 Energy Minimization Multi-Scale (emms) drag model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部