Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid proper...Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes.展开更多
基金The project supported by National Natural Science Foundation of China(No.51991364,51974347)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-184-002。
文摘Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes.