Although many studies have found that cadmium(Cd)can be toxic to microalgae,only a few reports focused on the role of extracellular polymeric substances(EPS)in Cd(Ⅱ)detoxification.The biochemical and physiological en...Although many studies have found that cadmium(Cd)can be toxic to microalgae,only a few reports focused on the role of extracellular polymeric substances(EPS)in Cd(Ⅱ)detoxification.The biochemical and physiological endpoints of Microcystis aeruginosa,including the composition and functional groups of soluble EPS(SL-EPS),loosely bound EPS(LB-EPS),and tightly bound EPS(TB-EPS),were detected to elucidate the toxicity and detoxification mechanisms of Cd(Ⅱ)for cyanobacteria.Toxicological and physiological assays on M.aeruginosa showed that the 0.25-mg/L Cd(Ⅱ)resulted in a larger inhibition on growth and F_(v)/F_(m).Nevertheless,Cd(Ⅱ)significantly induced much higher contents of superoxide dismutase(SOD),intracellular microcystin LR(MC-LR),extracellular MC-LR,and EPS.Scanning electron microscopy with energy dispersive X-ray spectroscopy confirmed that Cd(Ⅱ)was absorbed into the EPS layer.Fourier transform infrared spectrum analysis revealed that the functional groups bound with Cd(Ⅱ)of algae biomass,SL-EPS,LB-EPS,and TB-EPS were somewhat different.The C=O/C=N groups ofδ-lactam or protein were their prominent functional groups,suggesting that amide or proteins in the EPS played a key role in the adsorption in Cd(Ⅱ).The concentration of 0.25 mg/L of Cd(Ⅱ)may change the chemical structure of EPS by altering the production of protein-like substances containing tryptophan.This study indicated that M.aeruginosa could detoxify Cd(Ⅱ)stress via induction of antioxidant capacity(higher SOD activity and MC synthesis),EPS production,and modification in chemical structure of EPS.展开更多
The mesoscale ensemble prediction system based on the Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS(EPS))has been pre-operational since April 2020 at South China Regional Meteorological Center(S...The mesoscale ensemble prediction system based on the Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS(EPS))has been pre-operational since April 2020 at South China Regional Meteorological Center(SCRMC),which was developed by the Guangzhou Institute of Tropical and Marine Meteorology(GITMM).To better understand the performance of the CMA-TRAMS(EPS)and provide guidance to forecasters,we assess the performance of this system on both deterministic and probabilistic forecasts from April to September 2020 in this study through objective verification.Compared with the control(deterministic)forecasts,the ensemble mean of the CMATRAMS(EPS)shows advantages in most non-precipitation variables.In addition,the threat score indicates that the CMA-TRAMS(EPS)obviously improves light and heavy rainfall forecasts in terms of the probability-matched mean.Compared with the European Center for Medium-range Weather Forecasts operational ensemble prediction system(ECMWF-EPS),the CMA-TRAMS(EPS)improves the probabilistic forecasts of light rainfall in terms of accuracy,reliability and discrimination,and this system also improves the heavy rainfall forecasts in terms of discrimination.Moreover,two typical heavy rainfall cases in south China during the pre-summer rainy season are investigated to visually demonstrate the deterministic and probabilistic forecasts,and the results of these two cases indicate the differences and advantages(deficiencies)of the two ensemble systems.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.31800457,32170383)。
文摘Although many studies have found that cadmium(Cd)can be toxic to microalgae,only a few reports focused on the role of extracellular polymeric substances(EPS)in Cd(Ⅱ)detoxification.The biochemical and physiological endpoints of Microcystis aeruginosa,including the composition and functional groups of soluble EPS(SL-EPS),loosely bound EPS(LB-EPS),and tightly bound EPS(TB-EPS),were detected to elucidate the toxicity and detoxification mechanisms of Cd(Ⅱ)for cyanobacteria.Toxicological and physiological assays on M.aeruginosa showed that the 0.25-mg/L Cd(Ⅱ)resulted in a larger inhibition on growth and F_(v)/F_(m).Nevertheless,Cd(Ⅱ)significantly induced much higher contents of superoxide dismutase(SOD),intracellular microcystin LR(MC-LR),extracellular MC-LR,and EPS.Scanning electron microscopy with energy dispersive X-ray spectroscopy confirmed that Cd(Ⅱ)was absorbed into the EPS layer.Fourier transform infrared spectrum analysis revealed that the functional groups bound with Cd(Ⅱ)of algae biomass,SL-EPS,LB-EPS,and TB-EPS were somewhat different.The C=O/C=N groups ofδ-lactam or protein were their prominent functional groups,suggesting that amide or proteins in the EPS played a key role in the adsorption in Cd(Ⅱ).The concentration of 0.25 mg/L of Cd(Ⅱ)may change the chemical structure of EPS by altering the production of protein-like substances containing tryptophan.This study indicated that M.aeruginosa could detoxify Cd(Ⅱ)stress via induction of antioxidant capacity(higher SOD activity and MC synthesis),EPS production,and modification in chemical structure of EPS.
基金National Key Research and Development Project(2019YFEO110100)National Natural Science Foundation of China(41975136)+5 种基金the Intelligent Gridded Forecasting Team of Guangdong Meteorological Bureau(GRMCTD202004)Guangdong Basic and Applied Basic Research Foundation(2019A1515011118)Science and Technology Planning Project of Guangzhou(202103000030)the Innovation and Development Project of the China Meteorological Administration(CXF2021Z009)the Science and Technology Research Project of Guangdong Meteorological Bureau(GMRC2020M06)the Open Fund of Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction(J202006)。
文摘The mesoscale ensemble prediction system based on the Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS(EPS))has been pre-operational since April 2020 at South China Regional Meteorological Center(SCRMC),which was developed by the Guangzhou Institute of Tropical and Marine Meteorology(GITMM).To better understand the performance of the CMA-TRAMS(EPS)and provide guidance to forecasters,we assess the performance of this system on both deterministic and probabilistic forecasts from April to September 2020 in this study through objective verification.Compared with the control(deterministic)forecasts,the ensemble mean of the CMATRAMS(EPS)shows advantages in most non-precipitation variables.In addition,the threat score indicates that the CMA-TRAMS(EPS)obviously improves light and heavy rainfall forecasts in terms of the probability-matched mean.Compared with the European Center for Medium-range Weather Forecasts operational ensemble prediction system(ECMWF-EPS),the CMA-TRAMS(EPS)improves the probabilistic forecasts of light rainfall in terms of accuracy,reliability and discrimination,and this system also improves the heavy rainfall forecasts in terms of discrimination.Moreover,two typical heavy rainfall cases in south China during the pre-summer rainy season are investigated to visually demonstrate the deterministic and probabilistic forecasts,and the results of these two cases indicate the differences and advantages(deficiencies)of the two ensemble systems.