Today,to describe the thermal performance of the building envelope and its components we use a variation of metrics;such as,R-value,ACH(air exchange rate per hour),SHGC(solar heat gain coefficient)of windows,U-factor ...Today,to describe the thermal performance of the building envelope and its components we use a variation of metrics;such as,R-value,ACH(air exchange rate per hour),SHGC(solar heat gain coefficient)of windows,U-factor etc.None of these performance indicators is meant to represent the overall thermal performance.In this paper,such a metric is introduced,the BEP(building envelope performance)value.Unlike the thermal resistance,typically expressed as an R-value,the BEP-value considers additional elements of heat transfer that affect the energy demand of the building because of exterior and interior(solar)thermal loads:conductive and radiant heat transfer,and air infiltration.To demonstrate BEP’s utility,validation studies were carried out by comparing the BEP-value to theoretical results using whole building energy simulation tools such as EnergyPlus and WUFI Plus.Results show that BEP calculations are comparable to calculations made using these simulation tools and that unlike other similar metrics,the BEP-value accounts for all heat transfer mechanisms that are relevant for the overall energy performance of the building envelope.The BEP-value thus allows comparing envelopes of buildings with different use types in a fair and realistic manner.展开更多
基金This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the US DOE(Department of Energy).
文摘Today,to describe the thermal performance of the building envelope and its components we use a variation of metrics;such as,R-value,ACH(air exchange rate per hour),SHGC(solar heat gain coefficient)of windows,U-factor etc.None of these performance indicators is meant to represent the overall thermal performance.In this paper,such a metric is introduced,the BEP(building envelope performance)value.Unlike the thermal resistance,typically expressed as an R-value,the BEP-value considers additional elements of heat transfer that affect the energy demand of the building because of exterior and interior(solar)thermal loads:conductive and radiant heat transfer,and air infiltration.To demonstrate BEP’s utility,validation studies were carried out by comparing the BEP-value to theoretical results using whole building energy simulation tools such as EnergyPlus and WUFI Plus.Results show that BEP calculations are comparable to calculations made using these simulation tools and that unlike other similar metrics,the BEP-value accounts for all heat transfer mechanisms that are relevant for the overall energy performance of the building envelope.The BEP-value thus allows comparing envelopes of buildings with different use types in a fair and realistic manner.