期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Exact Solutions of (2+1)-Dimensional Boiti-Leon-Pempinelle Equation with (G'/G)-Expansion Method
1
作者 熊守全 夏铁成 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第7期35-37,共3页
In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with thr... In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations. 展开更多
关键词 2+1)-dimensional Boiti-Leon-Pempinelle equation g′/g-expansion method hyperbolic function solutions trigonometric function solutions
下载PDF
推广的(G′/G^2)展开法求Gardner方程的新精确解
2
作者 曾娇 崔泽建 《西华师范大学学报(自然科学版)》 2020年第4期359-363,共5页
应用(G′/G^2)展开法求Gardner方程的新精确解,讨论了λμ在三种不同情形下的通解,分别得出了该方程的双曲函数通解、三角函数通解以及有理函数通解。实践证明,推广的(G′/G^2)展开法不仅能直接有效地求出Gardner方程的精确解,而且与之... 应用(G′/G^2)展开法求Gardner方程的新精确解,讨论了λμ在三种不同情形下的通解,分别得出了该方程的双曲函数通解、三角函数通解以及有理函数通解。实践证明,推广的(G′/G^2)展开法不仅能直接有效地求出Gardner方程的精确解,而且与之前已有的Gardner方程精确解的求解方法相比,此方法扩充了Gardner方程的解系,因此,(G′/G^2)展开法对求解偏微分方程具有十分重要意义。 展开更多
关键词 (g′/g^2)展开法 gardner方程 齐次平衡法 行波解 精确解
下载PDF
Decay Mode Solutions to (2 + 1)-Dimensional Burgers Equation, Cylindrical Burgers Equation and Spherical Burgers Equation 被引量:1
3
作者 Xiangzheng Li Jinliang Zhang Mingliang Wang 《Journal of Applied Mathematics and Physics》 2017年第5期1009-1015,共7页
Three (2 + 1)-dimensional equations—Burgers equation, cylindrical Burgers equation and spherical Burgers equation, have been reduced to the classical Burgers equation by different transformation of variables respecti... Three (2 + 1)-dimensional equations—Burgers equation, cylindrical Burgers equation and spherical Burgers equation, have been reduced to the classical Burgers equation by different transformation of variables respectively. The decay mode solutions of the Burgers equation have been obtained by using the extended -expansion method, substituting the solutions obtained into the corresponding transformation of variables, the decay mode solutions of the three (2 + 1)-dimensional equations have been obtained successfully. 展开更多
关键词 DECAY mode Solution (2 + 1)-Burgers EQUATION (2 + 1)-Cylindrical BURgERS EQUATION (2 + 1)-Spherical BURgERS EQUATION Transformation of Variables Extended (g'/g)-expansion Method
下载PDF
2G-3G无缝的网络 无缝的体验
4
《电信网技术》 2005年第8期56-59,共4页
本文将探讨建设无缝网络的意义,分析从GSM到WCDMA的无缝网络部署原则,并介绍爱立信无缝网络解决方案,达到经验共享的目的。
关键词 2g^3g 无缝网络 无缝体验 3g 2g 网络解决方案 WCDMA 网络部署 爱立信 gSM
下载PDF
On the modified(G′/G^(2))-expansion method for finding some analytical solutions of the traveling waves 被引量:1
5
作者 S.Behera N.H.Aljahdaly J.P.S.Virdi 《Journal of Ocean Engineering and Science》 SCIE 2022年第4期313-320,共8页
This work investigates three nonlinear equations that describe waves on the oceans which are the Kadomtsev Petviashvili-modified equal width(KP-MEW)equation,the coupled Drinfel’d-Sokolov-Wilson(DSW)equation,and the B... This work investigates three nonlinear equations that describe waves on the oceans which are the Kadomtsev Petviashvili-modified equal width(KP-MEW)equation,the coupled Drinfel’d-Sokolov-Wilson(DSW)equation,and the Benjamin-Ono(BO)equation using the modified(G′/G^(2))-expansion approach.The solutions of proposed equations by modified(G′/G^(2))-expansion approach can be trigonometric,hyperbolic,or rational solutions.As a result,some new exact solutions are obtained and plotted. 展开更多
关键词 Nonlinear physical models NLEEs Modified(g′/g^(2))-expansion approach KP-MEW equation Drinfeld and Soklov and Wilson equation Benjamin-Ono equation
原文传递
Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation 被引量:3
6
作者 LU Hai-Lin LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期795-800,共6页
In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more genera... In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+ 1)-dimensional KK equation by the symmetry method and the (G1/G)-expansion method. Consequently, we find some new solutions of (2+1)-dimensional KK equation, including similarity solutions, solitary wave solutions, and periodic solutions. 展开更多
关键词 2+1)-dimensional Kaup-Kupershmidt equation the symmetry method the g1/g-expansion method exact solutions
下载PDF
(2+1)维Z-K方程的解析近似解研究
7
作者 乔银春 郭田 张睿 《科学技术创新》 2021年第18期37-38,共2页
近十几年来,基于齐次平衡原理的各种特殊函数法求解非线性发展型方程的解析近似解成为研究重点。本文将利用改进的(G’/G^(2))-展开法对Zakharov-Kuznetsov方程(简称Z-K方程)的解析近似方法进行扩展,求得新的双曲函数通解、三角函数通... 近十几年来,基于齐次平衡原理的各种特殊函数法求解非线性发展型方程的解析近似解成为研究重点。本文将利用改进的(G’/G^(2))-展开法对Zakharov-Kuznetsov方程(简称Z-K方程)的解析近似方法进行扩展,求得新的双曲函数通解、三角函数通解以及有理函数通解;通过将(G’/G’+G)-展开法改进为(G/G’+G)-展开法,并应用此方法求解Z-K方程。 展开更多
关键词 Z-K方程 改进的(g’/g^(2))展开法 (g/g+g’)展开法 解析近似解
下载PDF
O_2(1∑_g^+)和O_2(~1△g)的碰撞发射谱 被引量:1
8
作者 申作春 鲁建业 高惠德 《光电子.激光》 EI CAS CSCD 北大核心 2002年第6期636-638,共3页
利用微波激励高纯 O2 观测到了峰值波长分别为 4 5 0 .8nm、5 6 5 .9nm的 2个新谱带。实验研究和动力学过程分析证明 ,这 2个新谱带是 O2 的激发态 O2 (1 +g )和 O2 (1 Δ g)碰撞反应发射的。
关键词 O2(1∑g^+) O2(1Δg) 碰撞发射谱 二聚物 弛豫 微波激励 高纯O2 分子
原文传递
基于矩形域的Bézier曲面及其拼接技术 被引量:1
9
作者 李睿 张贵仓 《兰州理工大学学报》 CAS 北大核心 2005年第2期96-98,共3页
首先讨论了Bézier曲面及其性质、作为相邻的Bézier曲面片在拼接时边界处容易引起连续性和光顺性的问题,同时指出在实际应用中的一些复杂曲面很难用一片Bézier曲面来构造.针对这个问题,阐述了几种不同的连续和光顺拼接条... 首先讨论了Bézier曲面及其性质、作为相邻的Bézier曲面片在拼接时边界处容易引起连续性和光顺性的问题,同时指出在实际应用中的一些复杂曲面很难用一片Bézier曲面来构造.针对这个问题,阐述了几种不同的连续和光顺拼接条件,以供在实际应用中根据要求来选择不同的约束条件. 展开更多
关键词 矩形域 BÉZIER曲面 g拼接 g^1、g^2拼接
下载PDF
广义Zakharov-Kuznetsov方程的新精确解
10
作者 张宁 《曲阜师范大学学报(自然科学版)》 CAS 2023年第4期53-57,共5页
应用扩展到负次幂的(G′/G^(2))展开法对广义Zakharov-Kuznetsov方程进行求解.在不同条件下得到广义Zakharov-Kuznetsov方程的9组新精确解,包含双曲函数解、三角函数解和有理函数解.对精确解中的参数赋值,利用符号计算软件Maple给出部... 应用扩展到负次幂的(G′/G^(2))展开法对广义Zakharov-Kuznetsov方程进行求解.在不同条件下得到广义Zakharov-Kuznetsov方程的9组新精确解,包含双曲函数解、三角函数解和有理函数解.对精确解中的参数赋值,利用符号计算软件Maple给出部分解的数值模拟图,并对怪波现象产生的原因进行分析.扩展的(G′/G^(2))展开法有计算简单、直接的特点,可以应用于其它非线性偏微分方程的求解研究中. 展开更多
关键词 扩展的(g′/g^(2))展开法 广义Zakharov-Kuznetsov方程 精确解 怪波
下载PDF
(2+1)维变系数非线性手性Schrödinger方程的新精确解
11
作者 赵宇 孙峪怀 《内江师范学院学报》 CAS 2023年第4期34-38,共5页
在一些实际问题中,变系数非线性演化方程比其反常系数方程更能反映介质的非均匀性和边界的非均匀性,因此研究变系数非线性演化方程具有重要意义.对(2+1)维变系数非线性手性Schrödinger方程进行分数阶复变换转化为常微分方程,分离... 在一些实际问题中,变系数非线性演化方程比其反常系数方程更能反映介质的非均匀性和边界的非均匀性,因此研究变系数非线性演化方程具有重要意义.对(2+1)维变系数非线性手性Schrödinger方程进行分数阶复变换转化为常微分方程,分离实部和虚部后再分别令其为零,接着利用(G′/G^(2))-展开法,求得了一系列带参数的精确行波通解,其中包括有理函数解、三角函数解和双曲函数解.最后当参数取特殊值时进一步得到扭结波、周期波、孤立波解等一系列新的精确解. 展开更多
关键词 (g′/g^(2))-展开法 变系数非线性手性Schrödinger方程 精确解
下载PDF
尘埃等离子体中时间分数阶mZK模型及其精确解
12
作者 张文会 杨红卫 高德智 《数学建模及其应用》 2020年第4期66-73,共8页
为了更加全面地了解尘埃等离子体中尘埃声孤波的传播特性与周期性,从(2+1)维低频冷尘埃等离子体的无量纲化方程出发,利用多尺度分析与约化摄动法推导(2+1)维mZK(modifed Zakharov-Kuznetsov)方程以描述尘埃声孤波的传播规律.与传统KdV... 为了更加全面地了解尘埃等离子体中尘埃声孤波的传播特性与周期性,从(2+1)维低频冷尘埃等离子体的无量纲化方程出发,利用多尺度分析与约化摄动法推导(2+1)维mZK(modifed Zakharov-Kuznetsov)方程以描述尘埃声孤波的传播规律.与传统KdV模型相比,该模型的非线性更高,其可描述孤波在面上的传播.进一步基于分数变分法与半逆法,获得了(2+1)维时间分数阶mZK方程,最后运用(G′/G2)展开法求解出尘埃等离子体中(2+1)维mZK时间分数阶方程的系列新精确解. 展开更多
关键词 尘埃声孤波 约化摄动法 时间分数阶mZK方程 (g′/g^2)展开法
下载PDF
变系数非线性Schr?dinger方程的新精确解 被引量:2
13
作者 杜玲禧 孙峪怀 吴大山 《内江师范学院学报》 2019年第12期21-26,共6页
首先对变系数Schrodinger方程进行行波变换转化为常微分方程,分离实部和虚部并分别令为零.由实部得到的第一种椭圆方程求得方程的冲击波解与包络孤波解,再利用(g′/g^2)-展开法,求得了一系列带参数的精确行波通解,其中包括有理函数解,... 首先对变系数Schrodinger方程进行行波变换转化为常微分方程,分离实部和虚部并分别令为零.由实部得到的第一种椭圆方程求得方程的冲击波解与包络孤波解,再利用(g′/g^2)-展开法,求得了一系列带参数的精确行波通解,其中包括有理函数解,三角函数解和双曲函数解.最后当参数取特殊值时进一步得到扭结波,周期波,孤立波等. 展开更多
关键词 (g′/g^2)-展开法 变系数非线性Schrodinger方程 精确解
下载PDF
Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches
14
作者 Muhammad Bilal Usman Younas Jingli Ren 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第8期50-66,共17页
Nonlinear Schrödinger-type equations are important models that have emerged from a wide variety of fields,such as fluids,nonlinear optics,the theory of deep-water waves,plasma physics,and so on.In this work,we ob... Nonlinear Schrödinger-type equations are important models that have emerged from a wide variety of fields,such as fluids,nonlinear optics,the theory of deep-water waves,plasma physics,and so on.In this work,we obtain different soliton solutions to coupled nonlinear Schrödinger-type(CNLST)equations by applying three integration tools known as the(G’/G^(2))-expansion function method,the modified direct algebraic method(MDAM),and the generalized Kudryashov method.The soliton and other solutions obtained by these methods can be categorized as single(dark,singular),complex,and combined soliton solutions,as well as hyperbolic,plane wave,and trigonometric solutions with arbitrary parameters.The spectrum of the solitons is enumerated along with their existence criteria.Moreover,2D,3D,and contour profiles of the reported results are also plotted by choosing suitable values of the parameters involved,which makes it easier for researchers to comprehend the physical phenomena of the governing equation.The solutions acquired demonstrate that the proposed techniques are efficient,valuable,and straightforward when constructing new solutions for various types of nonlinear partial differential equation that have important applications in applied sciences and engineering.All the reported solutions are verified by substitution back into the original equation through the software package Mathematica. 展开更多
关键词 soliton solutions exact solutions CNLST equations (g’/g^(2))-expansion function method MDAM generalized Kudryashov method
原文传递
Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations
15
作者 Mohammad Asif Arefin M.Ayesha Khatun +1 位作者 M.Hafiz Uddin Mustafa Inc 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期292-303,共12页
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m... This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering. 展开更多
关键词 Riemann-Liouville fractional derivative Space-time fractional(2+1)-dimensional dispersive long wave equation Approximate long water wave equation Wave transformation The two-variable(g′/g 1/g)-expansion method
原文传递
Fractional soliton dynamics of electrical microtubule transmission line model with local M-derivative
16
作者 Nauman Raza Saima Arshed +1 位作者 Kashif Ali Khan Mustafa Inc 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第9期17-25,共9页
In this paper,two integrating strategies namely exp[-Ф(Х)]and (G'/G^(2))-expansion methods together with the attributes of local-M derivatives have been acknowledged on the electrical microtubule(MT)model to ret... In this paper,two integrating strategies namely exp[-Ф(Х)]and (G'/G^(2))-expansion methods together with the attributes of local-M derivatives have been acknowledged on the electrical microtubule(MT)model to retrieve soliton solutions.The said model performs a significant role in illustrating the waves propagation in nonlinear systems.MTs are also highly productive in signaling,cell motility,and intracellular transport.The proposed algorithms yielded solutions of bright,dark,singular,and combo fractional soliton type.The significance of the fractional parameters of the fetched results is explained and presented vividly. 展开更多
关键词 solitons solution MICROTUBULE nonlinear transmission line (g'/g^(2))-expansion method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部