期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
矿渣聚丙烯纤维混凝土抗弯疲劳性能 被引量:10
1
作者 张慧莉 田堪良 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第4期699-707,共9页
为了研究聚丙烯纤维和磨细粒化高炉矿渣(GGBFS)在不同应力水平和频率下对混凝土抗弯疲劳性能的影响,将4个配比的聚丙烯纤维和5个配比的矿渣分别掺入混凝土中,当应力水平为0.49、0.59、0.69,频率为20Hz时以及应力水平为0.59,频率为30、40... 为了研究聚丙烯纤维和磨细粒化高炉矿渣(GGBFS)在不同应力水平和频率下对混凝土抗弯疲劳性能的影响,将4个配比的聚丙烯纤维和5个配比的矿渣分别掺入混凝土中,当应力水平为0.49、0.59、0.69,频率为20Hz时以及应力水平为0.59,频率为30、40、50、60Hz时测试抗弯疲劳极限强度和疲劳寿命.研究表明:累积抗弯疲劳强度能够更准确地评价混凝土抗弯疲劳性能;聚丙烯纤维可以提高混凝土累积抗弯疲劳强度和抗疲劳寿命;矿渣及其水化物使得混凝土结构密实,改善了界面过渡区(ITZ)的结构,可以提高混凝土抗弯疲劳性能;抗弯疲劳性能随着应力水平提高而下降,S-N数学模型可以用于预测20Hz频率动疲劳荷载下的矿渣聚丙烯纤维混凝土工程寿命;在一定的应力水平下,测试频率越高,抗弯疲劳性能越差,f-N数学模型可以用于预测变频率动疲劳荷载下的矿渣聚丙烯纤维混凝土工程寿命. 展开更多
关键词 抗弯疲劳极限 疲劳寿命模型 聚丙烯纤维 磨细粒化高炉矿渣(ggbfs) 扫描电子显微镜(SEM) 应力水平
下载PDF
The Impact of Marine Water on Different Types of Coarse Aggregate of Geopolymer Concrete
2
作者 Shimaa Younis Megahed Abolwafa Mohamad Elthakeb +2 位作者 Walid Alsayed Mohamed Mohammed Taha Nooman Walid Hessian Soufy 《Journal of Minerals and Materials Characterization and Engineering》 2019年第5期330-353,共24页
This research studies the impact of different types of coarse aggregate on the behavior of geopolymer concrete based on both fly ash (FA) and ground granulated blast furnace slag (GGBFS) in different marine environmen... This research studies the impact of different types of coarse aggregate on the behavior of geopolymer concrete based on both fly ash (FA) and ground granulated blast furnace slag (GGBFS) in different marine environments. Aiming to solve the problems caused by the construction and demolition waste and the depletion of natural aggregates, in the present study coarse recycled aggregates is used to produce new green concrete with a fly ash-slag based geopolymer. By this examination, the research seeks to improve the quality and productivity of concrete used in construction and hydraulic projects. For this research, four mixtures containing different types of coarse aggregate in two different water environments were used. The utilized mixtures contained natural aggregate concrete (NAC) such as basalt and crushed marble. Also, recycled coarse aggregate concrete (RAC), which totally replaced natural aggregate, was presented in this paper such as crushed concrete and crushed ceramic. For this study, in the sieve analysis;specific and unit weights, was recorded. Furthermore, the mechanical properties were determined, using a compressive test that was conducted on the 7th, 28th, 56th and 90th days at different water environments;potable water (PW) and sea water (SW). Durability test was also performed for total absorption measurement. Results indicated that geopolymer concrete exhibits better strength in marine environments than in those of potable water. Results also showed that crushed marble (CMA) exhibits higher compressive strength and durability. 展开更多
关键词 GEOPOLYMER CONCRETE FLY Ash Ground Granulated Blast FURNACE Slag (ggbfs) Sea WATER Natural AGGREGATE CONCRETE Recycled CONCRETE AGGREGATE Compressive Strength and Durability
下载PDF
Effect of mineral admixtures and repeated loading on chloride migration through concrete
3
作者 Wu-man ZHANG Heng-jing BA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第9期683-690,共8页
The effect of fly ash (FA) and ground granulated blast furnace slag (GGBFS) on chloride migration through concrete subjected to repeated loading was examined. Portland cement was replaced by three percentages (20%, 30... The effect of fly ash (FA) and ground granulated blast furnace slag (GGBFS) on chloride migration through concrete subjected to repeated loading was examined. Portland cement was replaced by three percentages (20%, 30%, and 40%) of mineral admixtures. Five repeated loadings were applied to concrete specimens using a WHY series fully automatic testing machine. The maximum loadings were 40% and 80% of the axial cylinder compressive strength (f′c). Chloride migration through concretes was evaluated using the rapid chloride migration test and the chloride concentration in the anode chamber was measured. The results showed that the replacement percentages of mineral admixtures, the curing time and repeated loading had a significant effect on chloride migration through concrete. The transport number of chloride through concrete cured for 28 d increased with increasing FA replacement and markedly decreased with extension of the curing time. 20% and 30% GGBFS replacement decreased the transport number of chloride through concrete, but 40% GGBFS replacement increased the transport number. Five repeated loadings at 40% or 80% f′c increased the transport number of chloride for all mixes. 展开更多
关键词 CONCRETE Fly ash (FA) Ground granulated blast furnace slag (ggbfs) Chloride migration Repeated loading
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部