为改善混响背景下传统匹配滤波算法效果不佳问题,在分析其非平稳性、有色性和非高斯性的基础上,提出了混合高斯时变自回归模型(Gaussian mixture Tvar Model,GTM),推导了模型公式及其参数求解方法,形成了GTM回波检测算法。为对混响特性...为改善混响背景下传统匹配滤波算法效果不佳问题,在分析其非平稳性、有色性和非高斯性的基础上,提出了混合高斯时变自回归模型(Gaussian mixture Tvar Model,GTM),推导了模型公式及其参数求解方法,形成了GTM回波检测算法。为对混响特性及滤波效果进行定量描述进而验证算法性能,给出了一种定量衡量混响非平稳性、有色性、非高斯特性的滤波效果评价方法。通过实测混响分析表明,GTM模型能够较好地拟合实测混响的概率密度曲线和功率谱密度曲线,实现了混响背景下回波的有效检测并改善混响特性。展开更多
文摘为改善混响背景下传统匹配滤波算法效果不佳问题,在分析其非平稳性、有色性和非高斯性的基础上,提出了混合高斯时变自回归模型(Gaussian mixture Tvar Model,GTM),推导了模型公式及其参数求解方法,形成了GTM回波检测算法。为对混响特性及滤波效果进行定量描述进而验证算法性能,给出了一种定量衡量混响非平稳性、有色性、非高斯特性的滤波效果评价方法。通过实测混响分析表明,GTM模型能够较好地拟合实测混响的概率密度曲线和功率谱密度曲线,实现了混响背景下回波的有效检测并改善混响特性。