Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have ...Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have been hampered by the pest leafhopper.Leafhopper alone has been shown to cause yield losses of up to 40%.In this study,screening and evaluation were performed to identify and categorize 100 cotton genotypes along with 5 checks as resistant,moderately resistant,sensitive and highly sensitive to leafhoppers.Results A total of hundred genotypes were evaluated along with five checks for leafhopper resistance.Based on the screening results,a total of 19 genotypes were resistant to leafhoppers,which was on par with the findings of the check KC 3.The contents of total soluble sugar,total soluble protein,and total free amino acids were significantly positively correlated with the mean grade,whereas total phenols content and trichome density were significantly negatively correlated with the susceptibility grade.However,based on screening and biochemical analysis,the genotypes KC 2,JR-23,Samaru-26-T,D 4,TCH 1728,RS 253,and B-61-1862 exhibited high resistance to leafhopper.Conclusion According to the findings of this study,choosing genotypes with high total phenolics content together with high trichome density and low contents of total soluble sugar,total soluble protein,and free amino acids may aid in the development of resistant genotypes.展开更多
Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivati...Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.展开更多
Background Gossypium barbadense L.has specific fibre in terms of its length,strength,and fineness,and known as extra-long staple(ELS) cotton,Sea–Island cotton,or Egyptian cotton.Narrow genetic base with less genetic ...Background Gossypium barbadense L.has specific fibre in terms of its length,strength,and fineness,and known as extra-long staple(ELS) cotton,Sea–Island cotton,or Egyptian cotton.Narrow genetic base with less genetic variability is observed in G.barbadense germplasm.Hence,this study was aimed to evaluate the genetic variability present in 108 germplasm accessions of G.barbadense and to identify the superior genotypes based on the fibre traits.Results We evaluated 108 accessions for five fibre quality traits along with three checks in augmented block design.All fibre traits showed significant differences among genotypes,indicating that there is genetic potential for improvement.Fibre strength and micronaire(MIC) showed high phenotypic and genotypic coefficients of variation.High heritability combined with high genetic advance as percentage of mean(GAM) was recorded for fibre length,strength,and micronaire.Fibre strength and fibre length were significantly correlated with each other,while both showed negative correlation with micronaire.Principal component analysis and Biplot analysis showed that uniformity index discriminated all the genotypes in higher level,while fibre length and strength were medium in discrimination power.Biplot revealed genotypes DB 16,EC959191,GSB 39,ARBB 20,5746U,EA 203,and EA 201 were genetically diverse.Hierarchal cluster analysis based on unweighted paired group method using arithmetic average(UPGMA) grouped the genotypes into four clusters,with each cluster consisting of 4,18,48,and 38 genotypes,respectively.Conclusion Among the genotypes,34 for fibre length(> 35 mm),18 for fibre strength(> 40.4 g·tex^(-1)) and 66 for micronaire(3.7-4.2,A grade) were identified as potential accessions based on their superiority.The superior fibre genotypes identified in this study are potential lines for the ELS cotton breeding program.展开更多
Fatty Acyl-ACP thioesterase(FAT)is a key enzyme controlling oil biosynthesis in plant seeds.FATs can be divided into two subfamilies,FATA and FATB according to their amino acid sequences and substrate specificity.The ...Fatty Acyl-ACP thioesterase(FAT)is a key enzyme controlling oil biosynthesis in plant seeds.FATs can be divided into two subfamilies,FATA and FATB according to their amino acid sequences and substrate specificity.The Upland cotton genome contains 20 GhFAT genes,amongst which 6 genes were of the GhFATA subfamily and 14 of the GhFATB subfamily.The 20 GhFAT genes are unevenly distributed on 14 chromosomes.The GhFATA genes have 5 or 7 exons and the GhFATB genes have 6 or 7 exons.All GhFAT proteins have the conserved Acyl-ACP_TE domain and PLN02370 super family,the typical characteristics of plant thioesterases.Analyses of the expression level of GhFATs and the compositions of fatty acid in 5-60 days-post-anthesis seeds showed that the ratio of saturated fatty acids to unsaturated fatty acids was consistent with the expression profile of GhFATB12,GhFATB3,and GhFATB10;the ratio of monounsaturated fatty acid to polyunsaturated fatty acids was consistent with the expression profile of GhFATA3.The oil contents of mature cottonseeds were positively correlated with the contents of palmitic acid and linolenic acid as well as seed vigor.These results provide essential information for further exploring the role(s)of the specific GhFATs in determining oil biosynthesis and cottonseed compositions.展开更多
文摘Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have been hampered by the pest leafhopper.Leafhopper alone has been shown to cause yield losses of up to 40%.In this study,screening and evaluation were performed to identify and categorize 100 cotton genotypes along with 5 checks as resistant,moderately resistant,sensitive and highly sensitive to leafhoppers.Results A total of hundred genotypes were evaluated along with five checks for leafhopper resistance.Based on the screening results,a total of 19 genotypes were resistant to leafhoppers,which was on par with the findings of the check KC 3.The contents of total soluble sugar,total soluble protein,and total free amino acids were significantly positively correlated with the mean grade,whereas total phenols content and trichome density were significantly negatively correlated with the susceptibility grade.However,based on screening and biochemical analysis,the genotypes KC 2,JR-23,Samaru-26-T,D 4,TCH 1728,RS 253,and B-61-1862 exhibited high resistance to leafhopper.Conclusion According to the findings of this study,choosing genotypes with high total phenolics content together with high trichome density and low contents of total soluble sugar,total soluble protein,and free amino acids may aid in the development of resistant genotypes.
文摘Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.
基金supported by ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, India。
文摘Background Gossypium barbadense L.has specific fibre in terms of its length,strength,and fineness,and known as extra-long staple(ELS) cotton,Sea–Island cotton,or Egyptian cotton.Narrow genetic base with less genetic variability is observed in G.barbadense germplasm.Hence,this study was aimed to evaluate the genetic variability present in 108 germplasm accessions of G.barbadense and to identify the superior genotypes based on the fibre traits.Results We evaluated 108 accessions for five fibre quality traits along with three checks in augmented block design.All fibre traits showed significant differences among genotypes,indicating that there is genetic potential for improvement.Fibre strength and micronaire(MIC) showed high phenotypic and genotypic coefficients of variation.High heritability combined with high genetic advance as percentage of mean(GAM) was recorded for fibre length,strength,and micronaire.Fibre strength and fibre length were significantly correlated with each other,while both showed negative correlation with micronaire.Principal component analysis and Biplot analysis showed that uniformity index discriminated all the genotypes in higher level,while fibre length and strength were medium in discrimination power.Biplot revealed genotypes DB 16,EC959191,GSB 39,ARBB 20,5746U,EA 203,and EA 201 were genetically diverse.Hierarchal cluster analysis based on unweighted paired group method using arithmetic average(UPGMA) grouped the genotypes into four clusters,with each cluster consisting of 4,18,48,and 38 genotypes,respectively.Conclusion Among the genotypes,34 for fibre length(> 35 mm),18 for fibre strength(> 40.4 g·tex^(-1)) and 66 for micronaire(3.7-4.2,A grade) were identified as potential accessions based on their superiority.The superior fibre genotypes identified in this study are potential lines for the ELS cotton breeding program.
基金This work was financially supported by the National Natural Science Foundation of China[31960369]the Project for Crops Breeding of Shihezi University[YZZX201803]。
文摘Fatty Acyl-ACP thioesterase(FAT)is a key enzyme controlling oil biosynthesis in plant seeds.FATs can be divided into two subfamilies,FATA and FATB according to their amino acid sequences and substrate specificity.The Upland cotton genome contains 20 GhFAT genes,amongst which 6 genes were of the GhFATA subfamily and 14 of the GhFATB subfamily.The 20 GhFAT genes are unevenly distributed on 14 chromosomes.The GhFATA genes have 5 or 7 exons and the GhFATB genes have 6 or 7 exons.All GhFAT proteins have the conserved Acyl-ACP_TE domain and PLN02370 super family,the typical characteristics of plant thioesterases.Analyses of the expression level of GhFATs and the compositions of fatty acid in 5-60 days-post-anthesis seeds showed that the ratio of saturated fatty acids to unsaturated fatty acids was consistent with the expression profile of GhFATB12,GhFATB3,and GhFATB10;the ratio of monounsaturated fatty acid to polyunsaturated fatty acids was consistent with the expression profile of GhFATA3.The oil contents of mature cottonseeds were positively correlated with the contents of palmitic acid and linolenic acid as well as seed vigor.These results provide essential information for further exploring the role(s)of the specific GhFATs in determining oil biosynthesis and cottonseed compositions.